	Reg. No.			
	Question Paper Code13241			
	DE / DTach DECREE EXAMINATIONS NOV / DEC 2024			
	D.E. / D. IECII DEGREE EXAMINATIONS, NOV / DEC 2024 Fifth Semester			
	Flectronics and Communication Engineering			
	20ECDW501 DISCOPTE TIME SIGNAL DOCCESSING WITH LABODA	тор	v	
	Regulations - 2020	IUK	1	
	Duration: 3 Hours Max. M	arks:	100	
	PART - A (MCO) (20 × 1 = 20 Marks)		<i>K</i> –	
	Answer ALL Questions	Marks	Level	co
1.	The ability to determine the frequency component of the signal is using	1	K1	<i>CO1</i>
_	(a) DFT (b) AFT (c) DST (d) CFT			
2.	In DIF-FFT radix- 2 domain sequence is decimated.	Ι	K2	COI
2	(a) Frequency (b) Time (c) Both (d) Phase The number of complex multiplications computed for N= 512 using Bodiy 2 FET	1	K?	COI
3.	The number of complex multiplications computed for $N=512$ using Radix-2 FFT is	1	Κ2	COI
	(a) 4608 (b) 2304 (c) 1152 (d) 1304			
4.	The poles of the Chebyshev filter lie on a	1	K1	<i>CO2</i>
	(a) Circle (b) Ellipse (c) Parabola (d) Straight Line			
5.	Mention the main advantage of using IIR filters over FIR filters?	1	K2	<i>CO2</i>
	(a) Linear phase response (b) Easier implementation in hardware			
	(c) Simpler design process (d) Potentially lower computational complexity	_		~ ~ •
6.	The Butterworth polynomial of order 1?	Ι	K2	CO2
7	(a) $S+1$ (b) $S-1$ (c) S (d) $S(S+2)$	1	V1	CO2
/.	Following methods are used to convert analog filter into digital filter?	1	ΛI	COS
	Impulse invariance (d) All of the mentioned			
8	Find the equation for normalized frequency?	1	K2	CO3
0.	(a) F/F_s (b) $F.F_s$ (c) F_s/F (d) None			
9.	The window method is used in FIR filter design to:	1	K1	CO3
	(a) Increase computational complexity (b) Reduce spectral leakage			
	(c) Create non-linear phase response (d) Increase the filter order	_		~ ~ .
10.	In order to examine the linear and nonlinear phase characteristics, two delay	Ι	K2	CO4
	functions are defined and they are			
	(a) impulse delay and non impulse delay (b) inaginitude delay and group delay (c) phase delay and group delay			
11.	Among the following not suitable either as low pass or a high pass filters?	1	K1	<i>CO</i> 4
	(a) h(n) symmetric and M odd (b) h(n) symmetric and M even			
	(c) h(n) anti-symmetric and M odd (d) h(n) anti-symmetric and M even			
12.	FIR filter structure is more memory efficient in?	1	K2	<i>CO</i> 4
	(a) Direct Form I (b) Parallel structure (c) Cascade structure (d) Direct Form II			
13.	Among the following, which is true in fixed point binary representation?	1	K1	<i>CO5</i>
	(a) Only positive numbers can be represented (b) Integers cannot be represented.			
1.4	(c) Tho position of binary point of fixed. (d) None of the above.	1	<i>V</i> 1	CO5
14.	The finite word length effects are due to (a) Quantization of input	1	ΛI	COS
	(a) Quantization of Input. (b) Quantization of Coefficients.			
15.	Limit cycles in the recursive are directly attributable to which of the following?	1	K2	CO5
	(a) Round-off errors in multiplication (b) Overflow errors in addition			
	(c) Both of the mentioned (d) None of the mentioned			
Kl	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		13	3241

16	Which of the following are true with respect to quantization of filter coefficients?	1	K1	CO5
10.	(a) Shift in location of poles and zeros. (b) Deviation of impulse response.			
	(c) Deviation of frequency response. (d) All of the above.			
17.	The following operation is used to prevent overflow .	1	K3	<i>CO6</i>
	(a) addition (b) multiplication (c) scaling (d) All of the mentioned			
18.	8. How many address buses are present in the DSP processor?			
	(a) 1 (b) 2 (c) 3 (d) 4			
19.	The following is used for interfacing a DSK board with the host computer?	1	K3	<i>CO6</i>
	(a) parallel port (b) serial port (c) lower port (d) upper port			
20.	The software is used for downloading the user program to the DSK.	1	K2	<i>CO6</i>
	(a) Program Composer Studio (b) Code Composer Studio			
	(c) Data Composer Studio (d) Address Composer Studio			

PART - B $(10 \times 2 = 20 \text{ Marks})$

	Answer ALL Questions			
21.	Draw the basic butterfly of DIF-FFT structure.	2	K1	<i>CO1</i>
22.	Distinguish overlap-save and overlap-add methods.	2	K2	<i>CO1</i>
23.	Compare Butterworth with Chebyshev filters.	2	K1	<i>CO2</i>
24.	Define the Prewarping effect.	2	K2	<i>CO2</i>
25.	Develop the Direct Form II representation of a Second order IIR system.	2	K2	СОЗ
26.	Write the bilinear transform equation between s-plane and z-plane.	2	K2	СОЗ
27.	Define Gibbs phenomenon.	2	K1	<i>CO</i> 4
28.	State the desirable characteristics of the window function.	2	K2	<i>CO</i> 4
29.	Define truncation.	2	K2	<i>CO5</i>
30.	List out the addressing modes supported by C5X processors.	2	K2	<i>CO6</i>

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31.	a)	Perform the linear filtering of finite duration sequences $h(n) = \{1, 2\}$ and	10	K3	COI
		$x(n) = \{1, 2, -1, 2, 3, -3, -2, -1, 1, 2, -1\}$ by overlap save method.			
		OR			

- b) Utilize the 8-point DFT of the given sequence $x(n) = \{1,1,1,1,1,1,1,1\}$ using 10 K2 CO1 DIT radix-2 FFT algorithm.
- 10 K2 CO2 32. Explain the procedure for designing analog filters using the Butterworth a) approximations.

OR

- Design a Chebyshev filter with a maximum pass band attenuation of 2.5dB; at 10 K2 CO2 b) $\Omega p=20 \text{ rad/sec}$ and the stop band attenuation of 30dB at $\Omega s=50 \text{ rad/sec}$.
- An Analog filter has a transfer function $H(s) = 10 / s^2 + 7s + 10$. Construct a 10 K2 CO3 33. a) digital filter equivalent to this using impulse invariant method for T = 0.2sec.

OR

Design a Butterworth digital filter using impulse invariant transformation by K2 CO3 10 b) taking T=1sec to satisfy the following specifications.

$$\begin{array}{ll} 0.9 \leq |H \ (e^{j\omega})| \leq 1, & \mbox{for} \ 0 \leq \omega \leq 0.35 \pi \\ |H \ (e^{j\omega})| \leq 0.275, & \mbox{for} \ 0.7 \pi \leq \omega \leq \pi \end{array}$$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13241

34. a) Explain the principle and procedure for designing FIR filter using rectangular ¹⁰ K2 CO4 window.

OR

- b) Simplify the coefficient h(n) of a linear phase FIR filter of length N=15 with a 10 K2 CO4 symmetric unit sample response and frequency that satisfies the condition. H(2πk/15)={1 for K=0,1,2,3 0.4 for K=4 0 for K=5,6,7}
- 35. a) Explain the characteristics of limit cycle oscillation with respect to the system ¹⁰ K² CO5 described by the difference equation : y(n) = 0.95 y(n-1) + x (n); x(n)= 0 and y(n-1)= 13. Estimate the dead range of the system.

OR

- b) Define quantization noise. Estimate the expression for quantization noise 10 K2 CO5 power.
- 36. a) Draw the schematic block diagram of the architecture of TMS320C5X ¹⁰ ^{K3} ^{CO6} Processor and explain the major block diagram of the same.

OR

b) Explain in detail the various addressing modes of Digital signal processors. 10 K3 CO6