Reg. No.						
_						

Question Paper Code

12845

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Sixth Semester

Computer and Communication Engineering

(Common to Fifth Semester Electronics and Communication Engineering)

20ECPW501 - DISCRETE TIME SIGNAL PROCESSING WITH LABORATORY

Regulations - 2020

Duration: 3 Hours	, М.	wl.c.	100		
Duration: 3 Hours Max $PAPT = A(10 \times 2 = 20 \text{ Morks})$					
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions					
1. State the properties of DFT.	2	<i>K1</i>	CO1		
2. Define twiddle factor of FFT.	2	K1	CO1		
3. Compare Butterworth with Chebyshev filters.					
4. Determine the order and the poles of low pass Butterworth filter that has a 3dB attenuation at 500Hz and an attenuation of 40dB at 1000Hz.					
5. Write the bilinear transform equation between s-plane and z-plane.	2	K1	CO3		
6. What is the need for prewarping?	2	<i>K1</i>	CO3		
7. Define Gibbs phenomenon.	2	<i>K1</i>	CO4		
8. List the different realization methods for realizing FIR systems.	2	K2	CO4		
9. Describe the quantization errors due to finite word length registers in digital filters.					
10. Interpret why rounding is preferred to truncation in realizing digital filter.					
PART - B (5 × 13 = 65 Marks) Answer ALL Questions					
11. a) Compute the eight point DFT of the sequence $x(n) = \begin{cases} 1,0 \le n \le 7 \\ 0, otherwise \end{cases} \text{ using DIT algorithms.}$	13	K2	CO1		
OR					
b) Using overlap-add method, compute $y(n)$ of a FIR filter with impulse response $h(n) = \{3, 2, 1\}$ and input $x(n) = \{2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$. Prove that the output response is the same when using the overlap-save method.		K2	CO1		
12. a) Construct an analog Butterworth filter satisfying the constraints $0.8 \leq H(\omega) \leq 1.0 \; ; \; 0 \leq \omega \leq \pi/4 \\ H(\omega) \leq 0.2 \; ; \; \pi/2 \leq \omega \leq \pi$ OR	13	K3	CO2		
VIX.					

- b) i) Explain the Analog Low pass Chebyshev Filter types and its ⁸ K2 CO2 characteristics with the necessary sketch and equations.
 - ii) Design a Chebyshev filter for the following specifications ⁵ K2 CO2 $\Omega p=1 \text{rad/sec}$; $\Omega s=20 \text{rad/sec}$; $\alpha_n=1 \text{dB}$; $\alpha_s=25 \text{dB}$.
- 13. a) Design a digital Butterworth filter satisfying the constraints 0.8 \leq | H(ω)| \leq 1.0; 0 \leq ω \leq π /4 | H(ω)| \leq 0.2; π /2 \leq ω \leq π

With T=1sec and use impulse invariant transformation.

OR

- b) A desired LPF with the following specification is 0.9 \leq |H ($e^{j\omega}$)| \leq 1, for $0 \leq \omega \leq 0.25\pi$ |H ($e^{j\omega}$)| \leq 0.24, for $0.5\pi \leq \omega \leq \pi$. Design a Chebyshev digital filter using Impulse invariant transformation. Use suitable structure to realize the filter.
- 14. a) Determine the coefficients of a linear phase FIR filter length M=15 ¹³ ^{K3} ^{CO4} which has a symmetric unit sample response and a frequency response that satisfies the conditions.

$$H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, fork = 0,1,2,3\\ 0, fork = 4,5,6,7 \end{cases}$$

OR

b) i) Sketch the linear phase realization of the system function

6 K3 CO4

- $H(Z) = \frac{1}{2} + \frac{1}{3}z^{-1} + z^{-2} + \frac{1}{4}z^{-3} + z^{-4} + \frac{1}{3}z^{-5} + \frac{1}{2}z^{-6}$
- ii) Explain the principle and procedure for designing FIR filter using 7 K3 CO4 rectangular window.
- 15. a) Consider the transfer function where $H(z) = H_1(z) H_2(z)$. $H_1(z) = \frac{1}{(1-0.5z^{-1})}$ and $H_2(z) = \frac{1}{(1-0.4z^{-1})}$. Estimate the output round off noise power. Assume b = 3.

OR

b) Explain the characteristics of a limit cycle oscillation with respect to 13 K2 CO5 the system described by the equation y(n) = 0.95 y(n - 1) + x(n), when the product is quantized to 5-bits by rounding (including the sign bit). The system is excited by an input x(n) = 0.75 for n = 0 and x(n) = 0; otherwise. Also, determine the dead band of the filter.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Draw the schematic block diagram of the architecture of TMS320C3X 15 K3 CO6 Processor and explain the major block diagram of the same.

OR

- b) Explain how the instruction sets of TMS320C5X processors are ¹⁵ K3 CO6 classified. Use appropriate instruction sets to write a program to generate a saw tooth wave.
- K1 Remember; K2 Understand; K3 Apply; K4 Analyze; K5 Evaluate; K6 Create