											—			
					Reg. No.									
			Question Pa	per Code	12557									
		B.E. / B.Te	ch DEGREH	E EXAMIN	NATIONS,	APRI	L/	/ M		202	4			
				Eighth Ser	nester									
			Electrical ar	nd Electron	nics Engine	ering								
		20EEEL	801 - FACTS	AND CUS	TOM POV	VER I	DE	VI	CES					
			R	egulations	- 2020									
Ι	Durati	on: 3 Hours							Max	. M	arks	: 10	0	
			PART - A Answ	A (10 × 2 = ver ALL Qu	20 Marks) lestions						Marks	K– Leve	, со	
1.	List 1	the limits of line	e loading capab	oility.							2	K1	<i>CO1</i>	
2.	Men	tion the need of	reactive power	r control in	power trans	smissi	on	lin	es.		2	K1	CO1	
3.	Write	e short notes on	bang-bang cor	ntrol.		_					2	KI	CO2	
4.	Wha	t are the three d	ifferent modes	of operatio	on of TCSC	?					2	KI	CO2	
5.	Defi	ne linear loads.									2	KI	CO3	
6. 7	Write	e the application	ns of UPFC.								2	KI V2	CO3	
/.	Com	pare UPFC and	IPFC.	69999							2	κ2 κ2	CO4	
8. 0	Cons	struct the basic of	control scheme	of SSSC.							2	κ2 κ2	CO4	
9. 10	Dille	tion the Classifi	OW and DVR	n nouver d							2	K2 K1	CO5	
10.	Men	tion the Classifi	cation of custo	in power d	evices.						2	m	005	
			PART - I	B (5 × 13 =	65 Marks)									
11	a)	Evaluin the	Answ affact of shur	er ALL Qu	lestions	nantio		0.12	12 0.11	100	13	к?	CO1	
11.	a)	transmission c	apacity of a she	ort symmet	rical transm	nission	n lir	ne.	pov	ver	15	R2	001	
	b)	Derive the rea receiving ends	ctive power co of the transmi	mpensation ssion lines.	n at the send	ding, r	nid	l-po	oint a	nd	13	K2	<i>CO1</i>	
12.	a)	Discuss the of S	design of SV VC on system	C voltage voltage.	regulator.	Also	d	isc	uss 1	he	13	K2	<i>CO2</i>	
	b)	Describe the n	nodelling of TC	CSC for loa	d flow stud	у.					13	К2	<i>CO2</i>	
13.	a)	With the aid of	f block diagran	n, explain t OR	he character	ristics	of	UP	PFC.		13	K2	СО3	
	b)	Explain with a and application	a neat sketch, t n of static sync	the operation the hronous co	ng principle mpensator.	e, V-I	cha	ara	cteris	tic	13	K2	СО3	
Kl	– Rem	ember; K2 – Under	rstand; K3 – Appl	y; K4 – Analy 1	vze; K5 – Eval	luate; K	K6 –	- Cr	eate		125	557		

14. a) Illustrate the different operating modes of SSSC for real and reactive 13 K2 CO4 power exchange.

OR

b) Draw the schematic diagram and describe the basic operating ¹³ K² CO4 principles of Interline power flow controller.

15.	a)	Outline the principle of DVR operation used for sag mitigation.		K3	<i>CO5</i>
		OR			
	b)	Explain the principle and working of DSTATCOM with a neat sketch.	13	K2	<i>CO</i> 5

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) Design a deadbeat controller in FACTS device with neat diagram. 15 K3 CO6OR
 - b) Choose an Adaptive control scheme for FACTS devices and derive the ¹⁵ K3 CO6 mathematical expressions for Adaptive control in FACTS controller design.