	Reg.	No.									
	Question Paper Code1252		2528								
	B.E. / B.Tech - DEGREE EXAMIN	ATIO	NS, N	OV	/ D	EC	2023	3			
	Flectrical and Electronic	siei s Fna	ineeri	nσ							
(C	common Electronics and Instrumentation Engir	eering	y & Ins	ng strur	nen	tatio	on ar	nd c	ontr	റി	
(0	Engineering)	5 cc m	Jui ui	ii e ii	cutiv	511 UI	ia e	onu	01	
	20EEPC201 - ELECTRICAL C	IRCU	JIT AI	NAL	YS	IS					
	(Regulations 20)20)									
Dur	Duration: 3 Hours Max. Ma				Mar	rks: 100					
	$PART - A (10 \times 2 = 2)$	20 Ma	rks)								
	Answer ALL Que	estions	5								
1.	Estimate the resultant resistance produced by	the p	arallel	con	nec	tion	oft	wo	M K-L 2,K	larks, evel, CC (2,CO1	
2.	How the series circuit is distinguished with parallel circuits?								2,K2,CO1		
3.	State maximum power transfer theorem for DC circuits.							2,K	<i>CO2</i>		
4.	State Reciprocity theorem.								2,K	<i>CO2</i>	
5.	A series RC circuit consists of a resistor 10 the time constant τ .	r 10 Ω and capacitor of 0.1F. Find					ind	2,K	£2,CO3		
6.	What is meant by transient time?							2,K	C1,CO3		
7.	Express the term tuned circuits. Mention the	differe	ent of t	une	d ci	rcui	ts.		2,K	<i>CO4</i>	
8.	Write the expression for resonant frequency	requency for Parallel RLC Circuit.						2,K	<i>CO4</i>		
9.	Compare star and delta connected system.								2,K	C2,CO5	
10.	Define power factor in terms of impedance and power components.							2,K	<i>C1,C05</i>		

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

Illustrate the Loop currents I_1 , I_2 and I_3 by Mesh loop analysis as ^{13,K3,CO1} 11. a) shown in Fig.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create *12528*

OR

b) Calculate the value of Nodal Voltages V_1 , V_2 and V_3 by nodal analysis ^{13,K3,CO1} method as shown in Fig.

12. a) Prove Thevenin's theorem and Norton's theorem for the given problem ^{13,K3,CO2} as shown in Fig.

b) For the circuit shown below, determine the voltage across $(2+j5)\Omega$ ^{13,K3,CO2} impedance by using the superposition theorem.

13. a) Derive the transient response of series R-L circuit, with DC input, ^{13,K2,CO3} using Laplace transform and also sketch the transient response curve.

OR

b) A Series RLC circuit with R=20 Ω , L =0.05 H and C = 20 microfarad ^{13,K3,CO3} has a constant voltage V= 100 V applied at t=0. Determine the current transient.

14. a) Analyze the value of L at which the circuit resonates at a frequency of 13, K3, CO4 1000 rad/s in the circuit shown in Fig.

- OR
- b) Explain the phenomenon of resonance. Derive the formula for the ^{13,K2,CO4} resonance frequency of the series resonance circuits. And also obtain the Capacitance and resonance curve.
- 15. a) A 400V, three phase supply feeds an un balanced, Delta connected ^{13,K3,CO5} load.The branch impedances of the load are $Z_R=(4+j8)\Omega$; $ZY=(3+j4)\Omega$ and $ZB=(15+j20)\Omega$. Find the line currents and Power across each phase. Assume RYB phase sequence.

OR

b) Explain three phase power measurement by 2 wattmeter method for ^{13,K2,CO5} star connected load and determine the power equation and draw the phasor diagram.

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) (i) A three phase balanced delta-connected load of $4+j8\Omega$ /Phase is ^{10,K3,CO5} connected across a 400V, 3Ø balanced supply. Determine the phase currents and Power (Phase sequence in RYB).
 - (ii) Explain in detail in the Concept of co-efficient coupling. 5,K2,CO4 OR
 - b) (i) A balanced Star connected load of (4+j3) Ohm / Phase is connected ^{10,K3,CO5} to a 3-Phase, 230V, 50Hz Supply. Evaluate (i) Line Current (ii) Power Factor (iii) Power.
 - (ii) Two coupled coils of self inductance L1 = 2H and L2 = 4 H are 5,K2,CO4 coupled in (i) series aiding (ii) series opposing (iii) parallel aiding (iv) parallel opposing. If the mutual inductance is 0.5H. Find the equivalent inductance in each case.