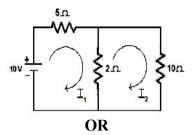
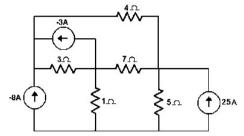

				-						
		Reg. No.								
	Question Paper Code	12652	2							
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024										
Second Semester										
Electrical and Electronics Engineering										
(Common to Electronics and Instrumentation Engineering & Instrumentation and Control										
Engineering)										
20EEPC201 - ELECTRICAL CIRCUIT ANALYSIS										
Regulations - 2020										
Duration: 3 Hours Max. M						Mai	:ks:	100		
	PART - A (10 × 2 = Answer ALL Q	,						Mark	s K– S Level	, со
1.	Define Ohm's law with its limitations.							2	K1	CO1
2.	List the importance of power factor.							2	Kl	CO1
3.	Justify the condition for maximum power tran	nsfer theoren	n.					2	K2	<i>CO2</i>
4.	List out the procedure to calculate Norton's C	urrent.						2	K2	<i>CO2</i>
5.	Define the time constant for RL circuit.							2	K1	CO3
6.	Compare between the steady state and the tracircuit.	insient respo	nse	of a	n e	lectri	ical	2	К2	СО3
7.	Define quality factor of series resonance circu	uit.						2	K1	<i>CO</i> 4
8.	Show the equation of coefficient of coupling.							2	K2	<i>CO4</i>
9.	What is real power and reactive power of AC	circuits?						2	K2	<i>CO5</i>
10.	Show the relation between Line current and H Network.	Phase current	t for	: Sta	r ar	nd De	elta	2	K2	<i>CO5</i>

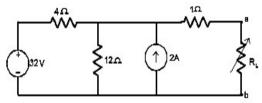
PART - B $(5 \times 13 = 65 \text{ Marks})$


Answer ALL Questions

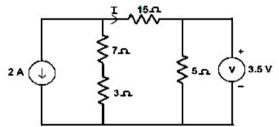
11. a) i) Show the current through 10 Ω resistor for the following circuit. 6 K2 CO1



ii) Explain the mesh equations for the circuit shown in figure below and 7 K2 CO1 solve the currents.


K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12652

b) Infer the nodal voltages for the given circuit and also obtain the power 13 K2 CO1 dissipation across 5Ω resistor.



12. a) Identify the Thevenins's equivalent circuit of the circuit shown below, ¹³ K³ CO² to left of the terminals ab. Then find the current through $RL = 16 \Omega$ and 36Ω .

b) Solve for the circuit shown by using superposition theorem to compute 13 K3 CO2 current (I).

13. a) A Series RLC circuits has R=50 Ω L= 0.2H, and C = 50 microfarad. ¹³ K2 CO3 Constant voltage of 100V is impressed upon the circuit at t=0. Find the expression for the transient current assuming initially relaxed conditions.

OR

b) A step voltage V(t) = 100 u(t) is applied to a series RLC circuit with ¹³ K2 CO3 L=10H, R=2 Ω and C= 5F. The initial current in the circuit is zero but there is an initial voltage of 50V on the capacitor in a direction which opposes the applied source. Find the expression for the current in the circuit.

14. a) Derive bandwidth for a series RLC circuit as a function of resonant ¹³ K² CO4 frequency.

OR

- b) A series RLC circuit consists of R=100 Ω , L = 0.02 H and C = 0.02 μ F. ¹³ K² CO4 Calculate frequency of resonance. A variable frequency sinusoidal voltage of constant RMS value of 50V is applied to the circuit. Find the frequency, when the voltage across L and C is maximum. Also calculate the maximum voltage across L and C. Also calculate voltages across L and C at frequency of resonance. Find maximum current in the circuit.
- 15. a) A symmetrical three phase 400V system supplies a balanced delta ¹³ K² CO5 connected load. The current in each branch circuit is 20A and phase angle 40° (lag) calculate the line current and total power.

OR

b) A balanced star connected load having an impedance $15+j20\Omega$ per ¹³ K² CO5 phase is connected to 3Ø, 440V, 50Hz. Find the line current and power absorbed by the load.

$PART - C (1 \times 15 = 15 Marks)$

16. a) Outline the single tuned circuit and derive the expression for mutual $15 K^2 CO^4$ inductance and current in the secondary coil.

OR

b) With a neat circuit and phasor diagram explain the three-phase power 15 K2 CO5 measurement by two wattmeter method.