	Reg. No.														
	Question Paper Code12871														
	B.E. / B.Tech DEGREE EXAMIN	NA'	ΓΙΟ	NS,	AI	PR	IL.	/ M	IAY	202	24				
	Third Sen	iest	er												
Electrical and Electronics Engineering															
	20EEPC302 - DC MACHINES	AN	D 1	ΓRA	NS	FC)R	MF	ERS						
	Regulations	- 20	020												
Duration: 3 Hours							Max. Marks: 100								
PART - A (10 × 2 = 20 Marks) Answer ALL Questions							Marks $\frac{K}{Level}$ CO								
1.	Compare the statically and dynamically induc										2		K2	CO.	1
2.	Define Co-Energy.										2		K1	CO	1
3.	Give the EMF equation of Lap wound D.C Ge	ener	ato	r.							2		K1	CO.	2
4.	List the methods of improving commutation.										2		K1	CO.	2
5.	Interpret the significance of back EMF.										2		K2	CO.	3
6.	Label the N-T characteristics of series motor.										2		K2	CO.	3
7.	State regenerative braking.										2		K1	CO	4
8.	Name three necessities of starters.										2		K1	CO	4
9.	Justify why transformer rating is in kVA?										2		K2	CO.	5
10.	Define Voltage regulation.										2		K1	CO.	5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) An iron rod 1.8 cm diameter is bent to form a ring of mean diameter ¹³ K³ CO1 28 cm and wound with 200 turns of wire. A gap of 1mm exists in between the end faces. Calculate the current required to produce a flux of 0.8 mWb. Take relative permeability of iron as 1200.

OR

- b) Draw and explain the typical magnetic circuit with air-gap and its ¹³ K³ CO1 equivalent electric circuit. Hence derive the expression for air gap flux.
- 12. a) Outline the construction of D.C Generator and explain the working ¹³ K² CO² principle and operation for the same.

OR

- b) i) Derive the expression for wave wound D.C Generator EMF equation. 5 K2 CO2
 - ii) Draw and explain the characteristics of DC series and DC Shunt 8 K2 CO2 Generators.

- 13. a) i) Deduce the equation for the electromagnetic torque developed in a ⁸ K2 CO3 D.C.Machine.
 - ii) Draw and explain the electrical and mechanical characteristics of D.C ⁵ K2 CO3 Shunt motors.

OR

- b) Illustrate the construction, working principle and operation of D.C ¹³ K2 CO3 Motor with its neat sketch.
- 14. a) Outline the connection diagram of swinburne's test in DC shunt motor ¹³ K² CO⁴ and also explain the procedural way to do it in laboratory.

OR

- b) Explain the constructive parts of 4-Point starter and discuss its ¹³ K² CO4 operation in detail.
- 15. a) Draw the general schematic of a single-phase transformer. Describe its ¹³ K2 CO5 working principle and deduce the expression for the e.m.f. in secondary winding.

OR

b) Obtain the equivalent circuit of a 200/400V 50 Hz single phase ¹³ K2 CO5 transformer from the following test data.
O.C.test: 200V, 0.7A, 70W - on L.V Side
S.C. test: 15V, 10A, 85W - on H.V side Calculate the secondary voltage when delivering 5 kW at 0.8 p.f. lagging. The primary voltage being 200V.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) In an autotransformer, how the current flows in different parts of its ¹⁵ K4 CO5 windings? Derive an expression for the saving of the copper in an autotransformer as compared to an equivalent two winding transformer.

OR

b) Explain Ward-Leonard system of speed control of a dc motor. ¹⁵ K5 CO4