					Re	eg. No.										
			Questio	n Paper (Code		1242	3								
B.E. / B.Tech - DEGREE EXAMINATIONS, NOV / DEC 2023 Third Semester																
Electrical and Electronics Engineering																
20EEPC303 - ELECTROMAGNETIC THEORY																
(Regulations 2020)																
Dur	ation	: 3 Hours				,					Max	k. M	ark	s: 10	0	
PART - A $(10 \times 2 = 20 \text{ Marks})$																
Answer ALL Questions																
														Mark Level	, CO	
1.	List the sources of electromagnetic fields.												2,K1,CO1			
2.		Define divergence and its physical meaning.												2,K1,CO1 2,K2,CO2		
3.		Demonstrate the boundary conditions between two dielectric media.												2,K2,CO2 2,K2,CO2		
4.	 Give the significant physical differences between Poisson's and Laplace's 2,K2 equations. 													2, K 2,C	.02	
5.	State Ampere's circuital law.											4	2,K1,CO3			
6.	Distinguish between magnetic scalar potential and magnetic vector potential.											4	2,K1,CO3			
7.	-	Define reluctance and permeability.											4	2,K1,CO4		
8.	1 1											4	2,K2,CO4			
9.	Mention the properties of uniform plane wave.										4	2,K1,CO5				
10.	Dev	Develop the values of velocity and intrinsic impedance for free space.												2,K2,C	205	
PART - B $(5 \times 13 = 65 \text{ Marks})$																
11.	Answer ALL Questions a) (i) State and prove Coulomb's Law.										6,K2,CO1					
	uj	(ii) Explain the divergence of a vector field and Divergence theorem.												7,K2,CO1		
	(ii) Explain the divergence of a vector field and Divergence theore OR											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	b)													13,K2,CO1		
12.	a)) Derive the expression for the capacitance of a parallel plate capacitor with two different dielectric materials in tangential and normal manner.											1	3,K2,0	C O 2	

OR

- b) A capacitor consists of squared two metal plates each 100 cm side ^{13,K2,CO2} placed parallel and 2 mm apart. The space between the plates is filled with a dielectric having a relative permittivity of 3.5. A potential drop of 500V is maintained between the plates. Evaluate (i) capacitance, (ii) charge of the capacitor, (iii) electric flux density, (iv) potential gradient.
- 13. a) Obtain the expression for energy stored in the magnetic field and also ^{13,K2,CO3} derive the expression for magnetic energy density.

OR

- b) (i) Derive the expression for the magnetic field intensity inside and 7,K2,CO3 outside a co- axial conductor of inner radius 'a' and outer radius 'b' and carrying a current of 'I' amperes in the inner and outer conductor.
 - (ii) Calculate the self-inductance of infinitely long solenoid. *6,K2,CO3*
- 14. a) State and derive the Maxwell's equations for free space in integral ^{13,K3,CO4} form and point form for time varying field.

OR

- b) (i) An iron ring with a cross-sectional area of 3 cm*cm and a mean ^{6,K2,CO4} circumference of 15 cm is wound with 250 turns of wire carrying a current of 0.3A. The relative permeability of the ring is 1500. Calculate the flux established in the ring.
 - (ii) Explore the relationship between circuit theory and field theory in *7,K2,CO4* terms of series RLC circuit.
- 15. a) State Poynting theorem and thus obtain an expression for ^{13,K3,CO5} instantaneous power density vector associated with electromagnetic field.

OR

b) Obtain an expression for electromagnetic wave propagation in lossy ^{13,K2,CO5} dielectrics.

PART - C $(1 \times 15 = 15 \text{ Marks})$

a) By means of Biot-Savart's law, derive an expression for the magnetic ^{15,K3,CO3} field intensity at any point on the line through the centre at a distance 'h' from the centre and perpendicular to the plane of a circular loop of radius 'a' and carrying current 'I'.

OR

b) At an interface separating magnetic media, apply boundary ^{15,K3,CO3} conditions and show that the tangential component of 'H' and normal component of 'B' are continuous at the boundary.