			Reg. No.								
		Question Paper Code	1288	9							
		B.E. / B.Tech DEGREE EXAMIN	NATIONS,	APR	RIL	/ M	[AY	202	4		
		Third Sen	nester								
		Electrical and Electro	nics Engine	eerin	g						
		20EEPC303 - ELECTROM	AGNETIC	TH	EO	RY					
		Regulations	- 2020								
Duration: 3 Hours Max. M								arks	: 10	0	
		$PART - A (10 \times 2 = 20)$	Marks)						Marks.	K –	CO
		Answer ALL Quest	ions					1	14115	Level	
1.	. Show that $H = (3y^{4}+z^{2})a_{x}+4x^{3}z^{2}a_{y}+3x^{2}y^{2}a_{z}$ is solenoid.								2	KI	COI
2.	2. What is meant by Gauss law?								2	K2	<i>CO1</i>
3.	. What is meant by equipotential surface?								2	K1	<i>CO2</i>
4.	Elect	ric field is conservative field. Justify.							2	K2	<i>CO2</i>
5.	5. Distinguish between solenoid and toroid.								2	K2	CO3
6.	6. State Amperes circuital law.									K1	CO3
7. Distinguish between conduction current and displacement current.									2	K2	<i>CO4</i>
8.	8. What is motional emf?								2	K1	<i>CO4</i>
9.	9. Mention the properties of uniform plane wave.								2	K2	CO5
10.	Defir	e skin depth.							2	K2	CO5
		PART - B (5 × 13 = Answer ALL Qu	65 Marks) aestions								
11.	a)	Write short notes on							3	K?	CO1
	i)	Gradient							2	К2 V2	
	11) ;;;)	Divergence							3	к2 К2	C01
	iv)	Divergence theorem							4	K2	CO1
	1.)	OR									
	b)	Derive an expression for electric field in straight conductor from its principles.	ntensity due	e to a	ın ir	nfin	ite lo	ong	13	K2	CO1
12.	a)	Find the potential at any point along the circular disc of ' σ ' C/m ² . The disc has ratio OR	ne axis of a adius of 'a' r	unif n.	orm	nly (charg	ged	13	K2	<i>CO2</i>
	b) i)	Deduce an expression for the canacitance	e of a paral	lel n	late	c	anaci	itor	8	K2	CO2

b) i) Deduce an expression for the capacitance of a parallel plate capacitor	8	K2 CO2
having two dielectric media in tangential manner.		
ii) Derive Poisson's and Laplace's equation.	5	K2 CO2

13. a) Obtain an expression for the magnetic field intensity due to straight ¹³ K² CO³ finite conductor carrying current 'I' amperes using Biot Savart's law.

OR

- b) Derive the expressions for boundary conditions in magnetic fields. ¹³ K2 CO3
- 14. a) With necessary explanation, derive the Maxwell's equation in point ¹³ K2 CO4 and integral form.

OR

- b) i) Write short notes on Faraday's law of electromagnetic induction.6K2CO4ii) Explain the relation between field theory and circuit theory.7K2CO4
- 15. a) State Poynting theorem and derive an expression for Poynting ¹³ K2 CO5 theorem.

OR

b) A 6580 MHz uniform plane wave is propagating in a material medium ¹³ K2 CO5 of $\varepsilon_r = 2.25$. If the amplitude of the electric field intensity of lossless medium is 500V/m. Calculate the phase constant, propagation constant, velocity, wave length and intrinsic impedance.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Check the validity of the divergence theorem considering the field ¹⁵ K³ CO1 D = $2xy a_x + x^2 a_y C/m^2$ and rectangular parallelepiped formed by the planes x=0, x=1;y=0,y=2; z=0,z=3.

OR

b) Verify Stokes theorem for the vector field, $\vec{F} = r^2 \cos \phi \vec{a}_r + Z \sin \phi \vec{a}_Z$ around the path defined by $0 \le r \le 3$, $0 \le \phi \le 45^\circ$, Z=0.