		Reg. No.									
	Question Paper Cod	le 1	12490								
	B.E. / B.Tech DEGREE EXA	MINATI	ONS	5, N(OV	/ DI	EC 2	023			
	Third S	Semester									
	Electrical and Elect	tronics En	gin	eerin	ıg						
	20EEPC304 - DIGITA	L LOGIO	C CI	RCU	JIT	S					
	(Regulatio	ons 2020)									
Dur	ation: 3 Hours						Ma	x. Ma	arks	3: 10	0
	$PART - A (10 \times 10^{-1})$			s)							
1	Answer ALI	-	15						ŀ		rks, el, CO ,CO1
1.	State the uses of Parity and Hamming Codes.										
2.	Compare RTL and DTL logic families.									2,K2,	
3.											,CO2
4.											,CO2
5.								iits.			,CO3
6.	Compare edge and level triggered FF.									2,K2,	,CO3
7.	Summarize the advantages and disadvacircuits.	antages of	f as	ynch	rono	ous	sequ	entia	1	2,K2,	,CO4
8.	Draw the block diagram of asynchronou	is sequent	ial c	ircui	ts.					2,K1,	,CO4
9.	List the types of PLD.									2,K1,	,CO5
10.	State the need for VHDL. List out the o	perators a	vaila	able i	in V	ΉD	L.			2,K1,	,CO5
	PART - B (5 × 1 Answer ALI			s)							
11.	a) Describe with an aid of circuit diag	gram the o	pera	tion	of 2	2 inp	out C	CMOS	5	13,K2	2,CO1

11. a) Describe with an aid of circuit diagram the operation of 2 input CMOS ^{13,K2,CO1} NAND gate and list out its advantages over other logic families.

OR

- b) Explain the structure and working principle of TTL based Totem-pole ^{13,K2,CO1} output configuration.
- 12. a) Minimize the following function using K-map: ^{13,K3,CO2} $F(A, B, C, D)=\sum m(0,4,6,8,9,10,12) +\sum d(2,13)$ and implement it using only NOR gates.

OR

b) Design a 4-bit Binary to Gray code converter and implement it using ^{13,K3,CO2} EX-OR gates.

13,K2,CO3

OR

- b) Explain the operation of JK Flip flop and T-Flip flop with state ^{13,K2,CO3} diagram, characteristic table and characteristics equation.
- 14. a) An asynchronous sequential circuit is described by the following 13,K3,CO4 excitation function, $Y=x_1x_2 + (x_1+x_2)y$ and output function Z=y. (i) Predict the logic diagram of the circuit. (ii) Interpret the transition table and the output map. (iii)Obtain its flow table.

OR

- b) Implement the following logic and analyze for the presence of any 13,K3,CO4 hazard f=x₁x₂ + x'₁x₃. If hazard is present briefly explain the type of hazard and design a hazard-free circuit.
- 15. a) Explain in detail the design procedure for register transfer language. 13,K2,CO5

OR

b) Describe the modeling techniques available in HDL. Give the VHDL ^{13,K2,CO5} code to realize a full adder using Behavioural modeling.

PART - C (1 × 15 = 15 Marks)

16. a) Design a combinational circuit with three inputs x, y, z and the three ^{15,K3,CO2} outputs A, B, C. When the binary input is 0, 1, 2 or 3, the binary output is one greater than the input. When the binary input is 4, 5, 6 or 7, the binary output is one less than the input.

OR

b) Assess the VHDL code for Binary UP/DOWN counter using JK flip ^{15,K3,CO5} flops.