		Reg. No.										
	Question Paper Cod	e	13289									
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024												
	Third Semester											
	Electrical and Elec	ctronics Eng	gineeri	ng								
	20EEPC304 - DIGIT	AL LOGIC	CIRC		S							
	Regulatio	ons - 2020	eme	UII	0							
Dı	uration: 3 Hours							Max	с. М	arks:	10)0
	PART - A (MCO) (2	$20 \times 1 = 20$	Marks)						K	_	
	Answer ALL	_ Questions		,					Mar	ks Lev	vel	CO
1.	The decimal number 13 is represented in natural H	BCD as							1	K	1	COI
	(a) 1101 (b) 0001 0011 (c) 000	001101		(d)) 000)11	101					
2.	A XOR gate produces output only when the input	s are							1	K.	1	COI
2	(a) High (b) Low (c)	Different	1.	((d) E	qua	ul 11 ·		1	v	1	COL
3.	Extremely low power dissipation and low cost per	r gate can be	e achiev	ved 1	n the	e to	llow1	ng	1	Λ.	1	COI
	$(a) ECI \qquad (b) CMOS \qquad (c)$	TTI			(d) N	109	2					
4	Which binary code is commonly used for error de	etection and o	correct	ion i	in da	ta	,		1	K	1	COI
	transmission?											
	(a) Gray code (b) BCD (c)	Hamming c	ode	((d) E	xce	ess-3	code				
5.	A data selector is also called as								1	K	1	<i>CO</i> 2
	(a) Priority encoder (b) Multiplexer (e	c) Decoder		(0	l) De	emu	ltiple	exer				
6.	How many AND gates are required for a 1-to-8 m	ultiplexer?							1	K.	1	<i>CO</i> 2
7	(a) 2 (b) 16 (c)) 8 1 ag tha mus d	had of		(d) 4	- 	£(\		1	K	2	coc
1.	If a three variable switching function is expressed -II(0, 3, 5, 6) then it can also be expressed as the su	as the prod	me by	max	term	S D	y I(A	., Б ,С)	1	K.	2	002
	(a) $II(1 2 4 7)$ (b) $\Sigma(0 3 5 6)$ (c)	$\Sigma(1~2~4~7)$	IIIS Uy	(d) Σ(1	2 3	37)					
8.	If A and B are the inputs of a half adder, the sum	is given by		(4) =(1	,_,.	,,,,		1	K	1	CO2
	(a) A AND B (b) A OR B (c)	A XOR B		(- d) A	EX	K-NO	R				
9.	"No Change" condition in JK Flip Flop is when	•							1	K.	2	CO3
	(a) $J=1, K=1$ (b) $J=1, K=0$ (4)	c) $J = 0, K =$	= 1	((d) J	=K	= 0					
10.	The term synchronous means								1	K	2	CO3
	(a) The output changes state only when any of the input is triggered											
	(b) The output changes state only when the clock	input is trigg	gerea									
	(d) The output changes state only when the input i	follows it										
11.	BCD counter is also known as	iono wo n							1	K.	2	CO3
	(a) Parallel counter (b) Decade counter (c) Sy	ynchronous	counter	r ((d) V	LS	I cou	nter				
12.	What is state diagram?								1	K.	2	CO3
	(a) It provides the graphical representation of state	es										
	(b) It provides exactly the same information as the	e state table										
	(c) It is same as the truth table											
13	(d) It is similar to the characteristic equation								1	K	1	CO4
15.	(a) (b) output (c) (c)	clock nulses			(ď) tir	ne		-		-	
14.	A ripple counter's speed is limited by the propaga	tion delay o	f		(u)	,	iie		1	K	1	CO4
-	(a) Each flip-flop (b) All flip-flops and gates											
	(c)The flip-flops only with gates (d)	Only circui	t gates									
15.	The race in which stable state does not depends on	n order is ca	lled						1	K	1	<i>CO</i> 4
	(a) Critical race (b) Identical race (c) No	on-critical rad	ce	(0	1) De	efin	ed ra	ce				
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K	K5 – Evaluate;	K6 – Cr	eate						13	28	9

16.	The	removal of hazards in combinational logic circuits requires the addition of redundant	1	Kl	<i>CO</i> 4	
17	 (a) f	ip-flops (b) gates (c) Both flip flops and gates (d) latches	1	K1	C05	
17.	and	components in VHDL.				
	(a) I	Process (b) package (c) functions (d) generic				
18.	Whi	ch type of PLD should be used to program basic logic functions?	1	K1	CO5	
	(a) (CPLD (b) PAL (c) PLA (d) SLD				
19.	The	FPGA refers to	1	K1	CO5	
	(a) I	First programmable Gate Array(b) Field Programmable Gate Array				
•	(c) I	First Program Gate Array (d) Field Program Gate Array	1	V 1	<i>CO5</i>	
20.	The	OR array is in a PAL.	1	K1	COS	
	(a) I	Programmable (b) Fixed (c) Floating (d) Does not exist				
		PART - B $(10 \times 2 = 20 \text{ Marks})$				
0.1	G 1	Answer ALL Questions	2	W2	COL	
21.	Solv	7e 9's complement of 432.	2	K5 W2	001	
22.	Solv	$(2.B6)_{16}$ into binary and octal.	2	K3	COI	
23.	List	the types of code convertors.	2	Kl	<i>CO</i> 2	
24.	Defi	ine minterm and maxterm.	2	Kl	<i>CO2</i>	
25.	Cho	ose the minimum number of flip flops required to design mod 20 counters.	2	K1	CO3	
26.	Wha	at are the types of triggering in a flip flop?	2	K2	CO3	
27.	Con	pare flow table and transition table.	2	K2	<i>CO</i> 4	
28.	Defi	ine critical race.	2	K1	CO4	
29.	Defi	ine ROM.	2	Kl	C05	
30.	Dev	elop a VHDL code for component AND.	2	K3	C05	
		$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = C \left(C_{\text{A}} + 10 - C 0 \mathbf{M}_{\text{C}} \mathbf{n}_{\text{B}} \right)$				
		Answer ALL Ouestions				
31	a) i)	Compare Totem pole TTL and open collector TTL output configuration	5	K2	C01	
51.	<i>a)</i> 1)	Evaluation for the and open collector 2 input TTL NAND gets	5	К2	C01	
	11)	OR	U		001	
	b)	Assume that the code word 1001100 is transmitted and that 1000100 is received. The	10	K3	COI	
	- /	receiver does not know what was transmitted and must look for proper parities to determine if the code is correct. Identify any error that has occurred in transmission if				
		even parity is used.				
32.	a) Solve the following Boolean function F, together with the don't-care conditions d, and then express the simplified function in sum of minterms:					
		a) $F(x, y, z) = \sum (0, 1, 2, 4, 5), d(x, y, z) = \sum (3, 6, 7)$ b) $F(A, B, C, D) = \sum (0, 6, 8, 13, 14), dA, B, C, D) = \sum (2, 4, 10)$				
		c) $F(A, B, C, D) = \sum (1,3,5,7,9,15), dA, B, C, D) = \sum (4,6,12,13)$				
	• •		10	VA	000	
	b)	Explain the operation of (1) Halfadder (11) Full Adder circuits.	10	K2	C <i>02</i>	
33.	a)	Outline a synchronous sequential circuit that goes through the count sequence 1,3,4,5	10	K2	CO3	
		repeatedly. Use T flip-flop.				

OR

Clock

For the given Moore model sequential circuit, Interpret the state table, state diagram, flip-flop input and output equations.

34.	a)	For the given boolean function, solve the hazard free circuit.	10	K3	<i>CO</i> 4		
		$F(A,B,C,D) = \sum m(1,3,6,7,13,15)$. Explain hazard in few words.					
	OR						
	b)	An asynchronous sequential circuit is described by the following excitation and output function, $Y = x1 x2 + (x1+x2)y$ and $Z = y$. Model the logic diagram of the circuit, interpret the transition table and the output map. And also obtain its flow table.	10	K3	<i>CO4</i>		
35.	a)	Develop VHDL code for 4 bit up and down counter.	10	K3	C05		
		OR					
	b)	Explain the concept of operators and its types in detail.	10	K2	C05		
36.	a) i)	Develop an asynchronous sequential circuit with two inputs X and Y and with one output. Whenever Y is 1, input X is transferred to Z. Whenever Y is 0, the output does not change for any change in X.	5	K3	<i>CO4</i>		
	ii)	Develop a PLA defined by the functions $F1=\sum m(3,5,7)$ and $F2=\sum m(4,5,7)$.	5	K3	C05		
		OR					
	b) i)	Explain critical and non-critical race. How will you obtain race free conditions?	5	K2	<i>CO</i> 4		
	ii)	Develop VHDL code to realize Half Adder.	5	K3	C05		

3