Reg. No.					
Question Paper Code 12915					
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024					
Third Semester					
Electrical and Electronics Engineering					
20EEPC304 - DIGITAL LOGIC CIRCUITS					
Regulations - 2020					
Duration: 3 Hours Ma	x. Ma	rks: 100			
PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	E K- Level CO			
1. Design AND gate using only NAND gates.	2	K2 CO1			
2. Apply De-Morgan's theorem to simplify (A'+ BC')'.	2	K2 CO1			
3. Write the Standard canonical POS form of F=A.(A+B').	2	K2 CO2			
4. List the applications of Multiplexer.	2	K1 CO2			
5. Differentiate latch and flip flop.	2	K2 CO3			
6. Give characteristic equation for D and T flip flops.	2	K2 CO3			
7. Explain Dynamic Hazard.	2	K1 CO4			
8. Define critical race.	2	K1 CO4			
9. Draw the general architecture of CPLD.	2	K1 CO5			
10. Explain the declaration of entity in VHDL.	2	K1 CO5			
PART - B (5 × 13 = 65 Marks)					
Answer ALL Questions					
11. a) Explain the operation of DTL with suitable example.	13	K2 CO1			
OR					
b) i) Find the hexadecimal equivalent of the decimal number 256 and the octal equivalent of the decimal number 64.	ne 6	K3 CO1			
 ii) Assume that the code word 1001100 is transmitted and that 1000100 received. The receiver does not know what was transmitted and must look for proper parities to determine if the code is correct. Designation any error that has occurred in transmission if even parity is used. 	st	K3 CO1			
12. a) i) Implement the following Boolean functions, using Suitable Multiplexer: $F(w, x, y, z) = \sum (2, 3, 10, 11, 12, 13, 14, 15)$	le ⁶	K3 CO2			
F(w, x, y, z) = $\sum (2, 3, 10, 11, 12, 13, 14, 15)$ ii) Design and explain the operation of Half adder.	7	K4 CO2			
OR					

OR

12915

	5, 6, or 7, the binary output is one less than the input.				
a)	Design hazard free circuit for the following: $F(A,B,C,D)=\sum(2,5,6,7,10,13,15)$	13	K4	CO4	
b)	OR Design a pulse mode circuit with inputs x1,x2. one output z. The circuit should produce an output pulse to coincide with the last input pulse in the sequence x1-x2-x2. No other input sequence should produce an output pulse. Use T flipflops.	13	<i>K4</i>	CO4	
a)	Build a VHDL code to realize full adder in dataflow modelling, behavioural and structural modelling. OR	13	K3	CO5	
b)	Develop VHDL code for the circuit shown:	13	<i>K4</i>	CO5	
PART - C (1 × 15 = 15 Marks)					
a) i)	Implement the following using PAL:- A= $\sum m(1,2,4,6)$; B= $\sum m(0,1,3,6,7)$ C= $\sum m(1,2,4,6,7)$; D= $\sum m(1,2,3,5,7)$	8	К3	CO5	
ii)	$\begin{array}{l} \text{Minimize using K-Map: } F(A, B, C, D) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15) \end{array}$	7	K3	CO2	
	OR				
b) i)	Convert the following: $(56)_{10} = (\?\)_8$ $(223)_{10} = (\?\)_{16}$	8	K3	CO1	
ii)	An asynchronous sequential circuit is described by the following excitation and output function, $Y=x1 x2 + (x1+x2)y Z= y$ Predict the logic diagram of the circuit, Interpret the transition table and the output map, Obtain its flow table.	7	K3	CO4	
– Reme	ember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2		129	915	

three outputs, A, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary' input is 4,

ii) Implement full adder using DEMUX. 7 K3 CO2 Demonstrate 3 bit Asynchronous down counter using JK flipflop. OR

b) i) Design and Explain the operation of Binary to excess-3 code

convertor.

13.

15.

Kl-

a)

b)

K4 CO2

6