	Reg. No.			
	Question Denon Code 12000			
	Question Paper Code 15000			
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 Fourth Semaster			
	Flectrical and Electronics Engineering			
	20FFPC/01 - SVNCHRONOUS AND INDUCTION MACHINES			
	Regulations - 2020			
	(Use of Graphs is permitted)			
Г	Juration: 3 Hours	Mark	s· 10	0
L	PART - A (MCO) (20 \times 1 = 20 Marks)	IVIAIN	<i>v</i>	0
	Answer ALL Questions	Marks	K – Level	СО
1.	Alternators are also called Synchronous generators because	1	K1	CO1
	(a) They must run at a constant speed irrespective of desired frequency.			
	(b) They must run at synchronous speed to give the desired frequency			
	(d) They must run at a speed which varies with nequency.			
2.	For an Alternator connected to a load, the terminal voltage per phase will	1	K1	CO1
	(a) Be equal to the induced EMF (b) Constant irrespective of the load			
2	(c) Vary with the load (d) None of these	1	K1	CO1
5.	(a) Less than 1 (b) Equal to 1 (c) More than 1 (d) Zero	1	m	001
4.	For a single layer, 36 slot, four pole, four phase stator winding, the value of distribution	1	K1	CO1
	factor is			
5	(a) 0.5 (b) 0.96 (c) 0.4 (d) 0.2	1	K1	CO^{2}
5.	(a) No load with over-excited fields (b) No load with under-excited fields	1	m	002
	(c) Normal load with minimum excitation (d) Normal load with zero excitation			
6.	If the field winding of an unloaded salient pole synchronous motor is open-circuited the	1	K1	<i>CO2</i>
	motor will (a) Dum (b) Not start (a) Dun as induction Motor (d) Dun as variable valuations motor			
7.	The speed regulation of a synchronous motor is	1	K1	<i>CO2</i>
, .	(a) 100% (b) 50% (c) 25% (d) 0%			
8.	The negative phase sequence in a three phase synchronous motor exists when the motor is	1	K1	<i>CO2</i>
	(a) Supplied with an unbalanced voltage (b) Supplied with an unbalanced load			
0	(c) Unbalanced system fault (d) All of the above	1	K1	CO3
).	short-circuited. The frequency of the current flowing in the short-circuited stator is			
	(a) Slip frequency (b) Supply frequency			
10	(c) The frequency corresponding to rotor speed (d) Zero An 8-pole 3-phase 50 Hz induction motor is operating at a speed of 720 rpm. The	1	K1	CO3
10.	frequency of the rotor current of the motor in Hz is			
	(a) 2 (b) 4 (c) 3 (d) 1			
11.	In a 3-phase squirrel cage induction motor, skewing of rotor slots reduces	1	K1	CO3
	(a) parasitic torque and noise but increases starting torque			
	(c) noise but increases pull-out torque and parasitic torque			
	(d) parasitic torque, noise pull-out torque and starting torque			
12.	The frame of an induction motor is made of() Al	1	K1	CO3
	(a) Aluminum (b) Silicon steel (c) Cast iron (d) Stainless steel			
K1 -	Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		130	00

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13.	The V/F control is a part of the synchronous speed changing technique.			
14	(a) True (b) False	1	K1	CO4
14.	(a) True (b) False	1	111	004
15.	In the rotor voltage injection method, when an external voltage source is in phase with the	1	K1	<i>CO</i> 4
	main voltage then speed will			
	(a) Increase (b) Decrease (c) Remain unchanged (d) First increases then decrease			~~ .
16.	The value of slip at which maximum torque occurs(1) $\mathbf{P} + \mathbf{Y}_{\text{res}}$ (1) $\mathbf{P} + \mathbf{Y}_{\text{res}}$ (1) $\mathbf{P} + \mathbf{Y}_{\text{res}}$	Ι	KI	CO4
17	(a) $K_2 \div X_2$ (b) $4K_2 \div X_2$ (c) $2K_2 \div X_2$ (d) $K_2 \div 3X_2$ In a split-phase motor, the running winding should have	1	K1	CO5
17.	(a) High resistance and low inductance (b) High resistance and High inductance			000
	(c) Low resistance and high inductance (d) Low resistance and low inductance			
18.	If the <u>capacitor</u> of a single-phase motor is short-circuited	1	K1	<i>CO5</i>
	(a) The motor will not start			
	(b) The motor will run in the same direction at a reduced speed			
	(c) The motor will run in the reverse direction (d) None of the above			
19.	To rate developed by a single-phase induction motor at starting is	1	K1	CO5
17.	(a) Less than the rated torque (b) More than the rated torque			
	(c) zero (d) None of the above			
20.	Which of the following motor will have a relatively higher power factor?	1	Kl	CO5
	(a) Capacitor start motor (b) Shaded pole motor			
	(c) Capacitor run motor (d) Split phase motor			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
0.1	Answer ALL Questions	2	VI	COL
21.	What are the conditions for parallel operation of an alternator?	2		col
22.	List the various methods to determine the voltage regulation.	2	KI	<i>COI</i>
23.	Why a 3 phase synchronous motor will always run at synchronous speed?	2	KI	<i>CO2</i>
24.	. Differentiate synchronous and Induction machine.		K2	CO2
25.	Define slip of an Induction motor.	2	K1	CO3
26.	Define pullout torque.	2	K1	CO3
27.	Mention the different types of three phase Induction motor.	2	K1	<i>CO</i> 4
28.	What is the need of starters?	2	K1	<i>CO</i> 4
29.	Why the single phase induction motor is not self-starting?	2	Kl	<i>CO5</i>
30.	Mention the applications of single phase induction motor.	2	<i>K1</i>	<i>CO5</i>
	PART - C (6 \times 10 = 60 Marks)			
	Answer ALL Questions			
31.	a) Derive the generated EMF expression for an alternator. What will be the rms value of	10	K2	<i>CO1</i>
	emf induced per phase in 3-phase, 6-pole, star-connected alternator having a stator			
	with 90 slots and 8 conductors per slot? The flux per pole is 0.4m wb and it runs at a speed of 1000 rpm. Assume full- pitched coils and sinusoidal flux distribution			
	OR			
	b) How the regulation of an alternator is found using EMF method? A single-phase, 500	10	K2	CO1
	V, 50 Hz alternator produces a short-circuit current of 170 A and an open circuit emf			
	of 425 V when a field current of 15A passes through its field winding. If its armature			
	has an effective resistance of 0.2 ohm, determine its full-load regulation at unity pf			
	and at 0.8 pf lagging using EMF method.			
22		10	K٦	COL
32.	a) Explain the V- curve and inverted V curve with neat diagram.	10	ΛŹ	02

	OR							
	b)	Discuss the starting methods of synchronous motor.	10	K2	<i>CO2</i>			
33.	a)	Describe the constructional features of both the squirrel cage induction motor and the slip ring induction motor.	10	K2	СО3			
	OR							
	b)	Explain the torque-slip characteristics of three phase induction motor.	10	K2	СО3			
34.	a)	List the starting methods of inductionmotor. Explain the Rotor resistance starter and Auto transformer starter for three phase induction motor. OR	10	K2	<i>CO4</i>			
	b)	What are the various types of braking in induction motor? Explain any two braking methods of induction motor.	10	К2	<i>CO4</i>			
35.	a)	Explain why the single phase induction motor is not self-starting? State the reason and explain the double field revolving theory. OR	10	К2	CO5			
	b)	Explain the step by step equivalent circuit of single phase Induction motor with neat diagram.	10	К2	CO5			
36.	a) i)	What are the speed control in stator side and the factors that influence the speed control of Induction motor?	5	K2	<i>CO4</i>			
	ii)	Explain the capacitor start induction motor with neat diagram, phasor diagram.	5	K2	<i>CO5</i>			
OR								
	b) i)	Explain the speed control of V/f method.	5	K2	CO4			
	;;) ;;)	Explain the characteristics of shaded note induction motor with next diagram	5	K2	CO5			
	11)	Exprain the characteristics of shaded pole induction motor with heat diagram.	5	112	000			