Reg. No.						

Question Paper Code

12635

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Fourth Semester

Electrical and Electronics Engineering 20EEPC401 - SYNCHRONOUS AND INDUCTION MACHINES

Regulations - 2020

(Use of *Graphs* is permitted)

Duration: 3 Hours Max.				
$PART - A (10 \times 2 = 20 Marks)$				co
	Answer ALL Questions			
	Define a synchronous machine.	2		CO1
2.	Recall the principle of an alternator.	2		CO1
3.	Infer pull-out torque in a synchronous motor.	2	K2	CO2
4.	List out the applications of synchronous motors.	2	K2	CO2
5.	A 12-pole, 3-phase alternator driven at a speed of 500 rpm, supplies power to an 8-pole, 3-phase induction motor. If the slip of the motor, at full load, is 3%, calculate the full-load speed of the motor.		K2	CO3
6.	State the difference between the slip ring rotor and cage rotor of an induction motor.	2	K2	CO3
7.	Define regenerative braking.	2	K1	CO4
8.	Outline the need for starting in motors.	2	K2	CO4
9.	Summarize the applications of a shaded pole induction motor.	2	K2	CO5
10.	Demonstrate the usage of centrifugal switches provided in many single phase induction motors.	2	K2	CO5
	PART - B $(5 \times 13 = 65 \text{ Marks})$			
11.	Answer ALL Questions a) Illustrate the constructional details and working principle of a synchronous generator.	13	K2	CO1
	OR			
	b) A three-phase star-connected alternator supplies a load of 10 MW at 0.85 power factor lagging & 11 KV (terminal voltage). Its resistance is 0.1 Ω / phase & synchronous reactance is 0.66 Ω / phase. Calculate the value of E.M.F generated and regulation.		K2	CO1
12.	a) Explain the various excitation modes using V and inverted V curves of a synchronous motor with the necessary diagram. OR	13	K2	CO2
	b) Discuss about the methods of starting of 3-phase synchronous motor.	13	K2	CO2

13.	a)	Derive the torque equation of a three-phase induction motor and find the condition for maximum starting and running torque.	13	K2	CO3				
	OR								
	b)	Classify the types of rotors of induction motor. Compare and Contrast the features of both.	13	K2	CO3				
14.	a)	Discuss the following starting methods of three-phase induction motors. (i) Direct On-line starter (ii) Star- delta starters	13	K2	CO4				
	OR								
	b)	Explain the various techniques of speed control of induction motor from rotor side control.	13	K2	CO4				
15.	a)	Demonstrate why single phase induction motor is not self-starting with the help of double field revolving theory. Also describe the constructional features of single phase induction motor.	13	K2	CO5				
		OR	1.2	7/2	005				
	b)	Summarize the classification of single-phase motors. Explain any two types of single-phase induction.	13	K2	CO5				

OR

induction motor.

PART - $C(1 \times 15 = 15 \text{ Marks})$

16. a) Develop in detail about the slip power recovery scheme of a three phase 15 K3 CO4

b) Construct the braking method of three phase induction motor with neat 15 K3 CO4 schematic and also mention it's limitations.