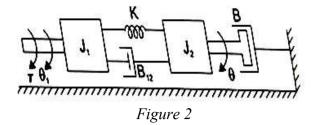

	Reg	g. No.			
	Question Paper Code	12482			
B.E./B.Tech - DEGREE EXAMINATIONS, NOV/DEC 2023					
Fourth Semester					
Electrical and Electronics Engineering					
20EEPC404 - CONTROL ENGINEERING					
(Regulations 2020)					
Duration: 3 Hours Max. Marks: 1					/larks: 100
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions					
1.	Write Mason's Gain formula.				Marks, K-Level, CO 2,K1,CO1
2.	Give some examples of control systems.				2,K1,CO1
3.	Distinguish between Type and Order of the system.				2,K2,CO2
4.	What is a PI Controller?			2,K1,CO2	
5.	What is root locus?				2,K1,CO3
6.	What is the dominant pole?				2,K1,CO3
7.	Define gain margin.				2,K1,CO4
8.	State Nyquist stability criterion.				2,K1,CO4
9.	Draw the circuit of the lead compensator an	nd draw its po	le ze	ro diagram.	2,K2,CO5
10.	Write the need of compensators and list types of compensators.				2,K2,CO5


PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Write the differential equations governing the mechanical rotational ^{13,K3,CO1} system as shown in Figure 1. Draw the torque-voltage and torque current electrical analogous circuits and verify by writing mesh and node equations.

b) Write the differential equations governing the mechanical rotational ^{13,K3,CO1} system as shown in Figure 2. Obtain the transfer function of the system.

- 12. a) Explain the Time Domain Specifications.
 - b) For a UFB Control System the OLTF is $\frac{10(s+2)}{s^2(s+1)}$. Determine the static error coefficients and ess when $R(S) = \frac{3}{s} \frac{2}{s^2} + \frac{1}{3s^3}$.

13.K2,CO2

13. a) A UFB Control system has an OLTF of $G(S) = \frac{K}{s(s^2 + 4s + 13)}$. Sketch the root locus.

OR

- b) Using the Routh-Hurwitz criterion determines stability of a system ^{13,K3,CO3} whose characteristic equation is $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$. Comment on the Location of roots.
- 14. a) The OLTF of a UFB system is $G(S) = \frac{1}{s(s+1)(1+2s)}$. Sketch the Polar plot and determine the Gain Margin and Phase Margin.

b) Sketch Bode plot for the transfer function and determine the gain 13,K3,CO4 crossover frequency.

$$G(S) = \frac{10}{s(1+0.4s)(1+0.1s)}$$

15. a) Write the procedure for Design of Lag-Lead Compensator using ^{13,K2,CO5} Bode plot.

OR

b) Write the procedure for design of Lag Compensator using Root 13,K2,C05 Locus.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Construct a suitable lag compensator so that phase margin is 40° and 15,K3,CO5 the steady state error for ramp input is less than or equal to 0.2 for a unity feedback system having an open loop transfer function of

$$G(S) = \frac{K}{s(1+2s)}$$
OR

b) Design a lead compensator for a unity feedback system with open ^{15,K3,CO5} loop transfer function, $G(S) = \frac{K}{s(s+1)(s+5)}$ to satisfy velocity error constant ≥ 50 and phase margin $\geq 20^{\circ}$.