		Reg. No.										
	Question Paper Code	1279	2									
	B.E. / B.Tech DEGREE EXAMINATIONS. APRIL / MAY 2024											
	Fourth Semester											
	Electrical and Electronics Engineering											
20EEPC404 - CONTROL ENGINEERING												
Regulations - 2020												
(Use of Semilog and Polar Graphs are permitted)												
	Duration: 3 Hours Max. Marks: 100											
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Ouestions							Marks	K– Leve	, co	•	
1.	Distinguish between open-loop and closed-loop control systems.							2	K2	CO	1	
2.	Determine the transfer function by using the signal flow graph							2	K2	CO	1	
		Þ ,	ዪ ,									
3.	What is the effect of adding a Proportional con	c troller into	the s	syste	em?	,		2	K2	CO.	2	
4.	Determine the damping factor and natural frequency for the given second order closed-loop systems transfer function								К2	CO.	2	
	$G(s) = \frac{100}{s^2 + 10s + 10}$	<u>.</u> .										
5.	Write the necessary and sufficient condition	for the st	tabil	ity	in 1	Rou	th	2	K2	CO.	3	
6.	How will you find the root locus on the real axis?								K2	CO	3	
7.	Define Phase Margin and Gain Margin.							2	K1	CO	4	
8.	State Nyquist stability Criterion.							2	K1	CO	4	
9.	Draw the pole-zero plot of lead compensator.							2	K3	CO	5	
10	List the effects of adding lag compensator in th	ne system.						2	K1	CO.	5	
11.	PART - B (5 × 13 = 65 Answer ALL Ques a) Write the differential equation governing systems and find the transfer function, $\frac{\theta_2(s)}{T(s)}$.	5 Marks) stions g the mech	anic	al r	ota	tion	al	13	K3	CO	1	
				H								

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12792

b) Determine the closed loop transfer function C(S)/R(S) of the system ¹³ K³ CO1 whose block diagram is shown below.

12. a) Derive the expressions for the second order system for underdamped ¹³ K³ CO² response and when the input is a unit step.

OR

- b) A unity feedback system has the forward transfer function ¹³ K3 CO2 $G(s) = \frac{K(2s+1)}{s(5s+1)(1+s)^2}$. The input r(t)=(1+6t) is applied to the system. Determine the minimum value of K if the steady-state error is to be less than 0.1.
- 13. a) Construct the root locus and determine the stability of the system ¹³ K³ CO³ whose characteristic equation is $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$. Also determine the number of roots lying onright half of s-plane, left half of s-plane and on imaginary axis.

OR

- b) The open loop transfer function of a unity feedback system is given ¹³ K3 CO3 by $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$. Sketch the root locus of the system.
- 14. a) Sketch the Bode plot and hence find the gain cross over frequency, ¹³ K³ CO⁴ phase cross over frequency, gain margin and phase margin.

$$G(s) = \frac{10(1+0.1s)}{s(1+0.01s)(1+s)}$$

OR

b) Sketch the polar plot for the following transfer function and find the ¹³ K³ CO⁴ gain margin and phase margin.

. . .

$$G(s) = \frac{400}{s(s+2)(s+10)}$$

15. a) The open loop transfer function of the uncompensated system is $I3 \quad K3 \quad CO5$ $G(s) = \frac{K}{s(s+2)}$. Design a lag compensator for the system so that the static velocity error constant K_v is 10/sec, the phase margin $\ge 60^{\circ}$.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12792

b) The open loop transfer function of the uncompensated system is $G(s) = \frac{K}{s(s+1)(s+2)}$. Design a suitable lead compensator for the system so that the static velocity error constant $K_v = 10$ /sec, the phase margin $= 50^0$ and the gain margin ≥ 10 db.

$PART - C (1 \times 15 = 15 Marks)$

16. a) Write the differential equation governing the mechanical translational ¹⁵ K5 CO1 systems and find the transfer function, $\frac{X_1(s)}{F(s)}$. Draw the force voltage electrical analogous circuit.

OR

b) Determine the transfer function of the given system using mason's gain ¹⁵ ^{K5} ^{CO1} formula by converting block diagram representation into signal flow graph.

