		Reg. No.									_
	Question Paper Code	1284	6								
	B.E. / B.Tech DEGREE EXAMI	NATIONS,	API	RIL	/ N	/IA`	Y 20	24			
Fifth Semester											
Electrical and Electronics Engineering											
	20EEPC501 - POWER SY	YSTEM AN	AL	YSI	S						
	Regulations	- 2020									
Dui	cation: 3 Hours						Max	. Ma	irks	: 100	
	PART - A (10 × 2 = Answer ALL Qu	20 Marks) lestions						Marks	K– Level	со	
1.	What is a single line diagram?							2	K1	<i>CO1</i>	
2.	State the advantages of per unit computation.							2	<i>K1</i>	<i>CO1</i>	
3.	What is the need for load flow study?							2	K2	<i>CO2</i>	
4.	Compare Gauss-Seidal and Newton Raphson	method of lo	oad f	low	an	alys	sis.	2	K2	<i>CO2</i>	
5.	What are the causes for a balanced fault in a p	ower system	ı?					2	<i>K1</i>	CO3	
6.	What is sub transient reactance?							2	K1	CO3	
7.	Find the positive sequence current, if $I_a=1$	$8 \angle 0^0 A$, $I_b =$	10	∠-	30	⁰ A,	and	2	K1	<i>CO4</i>	
8.	$I_c=10\angle 30^\circ$ A. Draw the zero sequence networks for a Star-D	elta transfor	mer					2	K2	CO4	
9.	What is a power angle curve?							2	<i>K1</i>	CO5	
10.	Define critical clearing angle and critical clear	ring time.						2	К2	CO5	

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

11. a) Determine Y bus for the 3 bus system. The line series impedance is as 13 K2 CO1 follows.

Line	Impedance (p.u)					
1-2	0.06+j0.18					
1-3	0.03+j0.09					
2-3	0.08+j0.24					

Neglect shunt capacitance of the line.

OR

b) The single line diagram of a three phase power system is shown in ¹³ K² CO1 Figure 1. Select a common base of 100MVA and 13.8KV on the generator side and construct the per unit impedance diagram.

Figure 1 G: 90MVA, 13.8kV, X=18% ; T1:50MVA, 13.8/220kV, X=10% T2:50MVA, 220/11kV, X=10% ; T3:50MVA, 13.8/132kV, X=10% T4:50MVA, 132/11kV, X=10% ; M: 80MVA, 10.45kV, X=20% Load: 57MVA, 0.8 p.f lagging at 10.45 kV

12. a) Discuss in detail about the algorithm for Gauss-Seidal load flow ¹³ K³ CO² analysis and give the steps for its implementation when all the types of buses are present in the system.

OR

- b) Explain in detail the algorithm for load flow solution by Newton- ¹³ K³ CO² Raphson iterative method using Y bus and draw the flowchart for the same.
- 13. a) A symmetrical fault occurs at bus 4 of the system through Z_f=j0.14 p.u¹³ K³ CO³ as shown in Figure 2. Compute the fault current, post fault voltages, and line flows.

Generator G₁, G₂:100MVA, 20kV, X_1 =15%. Transformer T₁, T₂: X_{leak} =9%, Transmission line L₁, L₂: X_1 =10%

Figure 2 OR

- b) With the help of an algorithm explain how a symmetrical fault can be 13 K3 CO3 analyzed by using Z _{bus}.
- 14. a) i) Derive the expression for fault current when a line to ground fault ¹⁰ K3 CO4 occurs on an unloaded generator.
 - ii) Draw the connection of sequence networks for the same. 3 K3 CO4

12846

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

OR

- b) The sequence components of currents in a system are $I_{a1}=8.334 \angle 90^{\circ}$, ¹³ K4 CO4 $I_{a2}=1.6668 \angle 90^{\circ}$, $I_{a0}=6.6672 \angle 90^{\circ}$. Find I_a , I_b , I_c .
- 15. a) Derive the swing equation of a single machine connected to an infinite ¹³ K³ CO⁵ bus system.

OR

b) Derive an expression for the critical clearing angle and clearing time to ¹³ K3 CO5 analyse the stability of a power system.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Draw the reactance diagram for the given network in Figure 3 with a ¹⁵ K3 CO1 base of 50MVA and 13.8kV on generatorG₁

Figure 3

 $\begin{array}{ll} G_1: 20MVA, 13.8kV, X''=20\%; & G_2: 30MVA, 18.0kV, X''=20\% \\ G_3: 30MVA, 20.0kV, X''=20\%; \\ T_1: 25MVA, 220/13.8 kV, X =10\% \\ T_2: 3Single phase unit each rated 10MVA, 127/18 kV, X =10\% \\ T_3: 35MVA, 220/22 kV, X =10\% \end{array}$

OR

- b) i) The moment of inertia of a 4 pole, 100 MVA, 11 kV, three phase, 0.8 8 K3 CO5 power factor, 50 Hz turbo alternator is 10000 kgm². Calculate H, M.
 - ii) A 50 Hz 8 pole generator rated at 80 MVA, 11kV has an inertia ⁷ K3 CO5 constant of 7 MJ/MVA. Find the moment of inertia M.

12846