		Reg. No.									
	Question Paper Code	1286	4								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											

Fifth Semester

Electrical and Electronics Engineering

20EEPC502 - POWER ELECTRONICS

Regulations - 2020

Duration: 3 Hours

Max. Marks: 100

	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	со
1.	In TRIAC which of the modes the sensitivity of gate signal is high?	2	K2	<i>CO1</i>
2.	Define latching current.	2	K1	CO1
3.	Illustrate the function of freewheeling diodes in a controlled rectifier.	2	K2	<i>CO2</i>
4.	Define overlap period or commutation period.	2	K2	<i>CO2</i>
5.	Define by duty-cycle.	2	Kl	CO3
6.	Distinguish between PWM and FM control.	2	K2	CO3
7.	Compare CSI and VSI.	2	K2	<i>CO</i> 4
8.	Define modulation index.	2	<i>K1</i>	<i>CO</i> 4
9.	What is a matrix converter?	2	<i>K1</i>	<i>CO5</i>
10.	Compare integral cycle control and phase control in AC voltage controllers.	2	K2	<i>CO5</i>

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	Explain the stead	y state and switching characteristics of MOSFET.	13	K2	COI
-----	----	-------------------	--	----	----	-----

OR

- b) Explain the structure and discuss the different modes of operation of ¹³ K² CO1 TRIAC with the help of VI characteristics.
- 12. a) Explain the operation of a single phase full converter with RLE load ¹³ K² CO² using relevant waveforms. Obtain the expressions for its average output voltage and RMS value of output voltage.

OR

b) Discuss the working of three phase six pulse converters with R load ¹³ K² CO² using relevant waveforms. Derive the average output voltage.

13. a) Explain the working of boost converter with a neat sketch with $13 K^2 CO^3$ waveform and derive the expression.

OR

- b) Discuss the principle of operation of DC-DC class-E chopper with ¹³ K² CO3 suitable waveforms.
- 14. a) Describe the principle of operation of a 3 phase voltage source inverter ¹³ K² CO⁴ with 180° conduction mode with necessary waveforms and circuits. Also obtain the expression for line to line voltage.

OR

- b) Explain different types of PWM techniques to control the output ¹³ K2 CO4 voltage.
- 15. a) Explain the operation of the step up and step down cyclo-converter ¹³ K2 CO5 with neat waveforms.

OR

b) A single phase voltage controller has input voltage of 230V 50Hz and ¹³ K2 CO5 a load of R=15 Ohm. For 6 cycles ON and 4 cycles OFF. Calculate (i) RMS output voltage (ii) Input power factor (iii) Average and RMS thyristor currents.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a) i)	Explain the different method of voltage control adopted in inverter.	7	K2 CO4
	ii)	Explain the operation of multistage control of AC voltage controllers	8	K2 CO5
		with a neat diagram.		

OR

- b) i) Explain the application of inverter in Induction heating. 8 K2 CO4
 - ii) Explain the operation of a 1-phase full wave AC voltage controller with 7 K2 CO5 R load using neat waveforms and derivation.