						Reg. No.									
			Questi	on Paper	Code	1266	3								
		B.E. / B. Te	ch DE	GREE EX	XAMI	NATIONS,	APR	RIL /	MA	AY 2	2024	1			
				Siz	xth Sen	nester									
			Electr	ical and H	Electro	nics Engine	erin	g							
		20EEPC602	2 – POW	ER SYST	EM O	PERATIO	N AN	ND C	ON	NTR	OL				
				Regu	lations	- 2020									
Du	ratio	n: 3 Hours								М	ax.	Mar	ks:	100	
			PA	RT - A (10 Answer A) × 2 = .LL Qu	20 Marks) estions					Ì	Marks	K – Leve	l CO	
1.	List	the types of load	ds.									2	K1	<i>CO1</i>	
2.	Clas	ssify the types of	f load for	ecasting.								2	K2	<i>CO1</i>	
3.	Defi	ine per unit droo	p.									2	K1	<i>CO2</i>	
4.	Discuss about Area Control Error. 2 K2 Co								<i>CO2</i>						
5.	5. Summarize the various components in AVR loop. 2								K2	СО3					
6.	. Describe about the stability compensation. 2 K2 CO.								СО3						
7.	. State the unit commitment problem. 2 K1 CO4								<i>CO</i> 4						
8.	List the merits and demerits of priority list methods. 2 K1 CO4														
9.	. Define Energy Control Centre. 2 K1 CO5														
10.	Disc	cuss about the m	ajor func	tions of E	MS.							2	K2	CO5	
			PA	RT - B (5	× 13 =	65 Marks)									
				Answer A	LL Qu	estions									
11.	a)	A generating sta	ation has	the follow	ving dai	ly load cycl	e		1			13	K3	<i>CO1</i>	
		Time(Hrs)	0-6	6 - 10	10-12	12-16	16	- 20	2	0-24	4				
		Load (MW)	20	25	30	25		35		20					
	(i) Maximum demand														
	(i) Unit generated per day														
		(iii) Ave	rage load	1 2											
		(iv) Load	d factor												
	1.)	A		41. 0 11	OR	1-						12	VS	COL	
	b) A power supply is having the following loads						13	КЭ	COI						
			dem	and(KW)	fac	tor of groun		Unial	uu I	acio	1				

Type of load	Maximum	Diversity	Demand factor		
	demand(KW)	factor of group			
Domestic	10.000	1.2	0.8		
Commercial	30,000	1.3	0.9		
Industrial	50,000	1.35	0.95		

If the overall system diversity factor is 1.5, calculate

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12663

- (i) Maximum demand
- Connected load of each type (ii)
- 13 K3 CO2 Two thermal generating units are operating in parallel at 60 Hz. To 12. a) supply a total load of 700 MW unit 1 with a rated output of 600 MW and 4% speed drop characteristics and unit 2 which has a rated output of 500 MW and 5% speed drop. If total load increases to 800 MW, calculate loading of each unit and the common frequency change before any supplementary action occurs. Neglect losses.

OR

- b) Analyze the static response of load frequency control of single area 13 K3 CO2 system in uncontrolled and controlled cases with neat diagram.
- 13 K2 CO3 Explain in detail about the generation and absorption of reactive power 13. a) with suitable sketches.

OR

- K2 CO3 b) Classify the different methods of voltage control. Explain in detail 13 about the Static VAR compensator with neat diagram.
- 13 K3 CO4 Determine the economic generation schedules of three generating units 14. a) in a power system to meet the system load of 925 MW. The operating limits and cost function is given below Operating limits 250 MW $\leq P_{G1} \leq 450$ MW $200 \text{ MW} \le P_{G2} \le 450 \text{ MW}$ $125 \text{ MW} \le P_{G3} \le 225 \text{ MW}$ Cost function is $F_1(P_{G1}) = 0.0045P_{G1}^2 + 5.2P_{G1} + 580$ $F_2(P_{G2}) = 0.0056P_{G2}^2 + 4.5 P_{G2} + 640$ $F_3(P_{G3}) = 0.0079 P_{G3}^2 + 5.8 P_{G3} + 820$ OR
 - b) Obtain the priority list of unit commitment using FLAPC for the given 13 K3 CO4 data

Heat rate for unit 1, H = $510 + 7.2 P_{G1} + 0.00142 P_{G1}^2 MW/hr$ Heat rate for unit 2, H = $310 + 7.85 P_{G2} + 0.00194 P_{G2}^2 MW/hr$ Heat rate for unit 3, H = $78+7.97 P_{G3}+0.00482 P_{G3}^2 MW/hr$ $P_{\rm D} = 550 \, {\rm MW}$

Unit	Minimum(MW)	Maximum(MW)	Fuel Cost (K)
1	150	600	1.1
2	100	400	1.0
3	50	200	1.2

- 13 K2 CO5 15. a) Explain in detail about the Energy Control Centre with neat diagram. OR 7
 - b) i) Explain detail about the functions of SCADA.
 - ii) Explain briefly about the state transition of power system with neat 6 K2 CO5 diagram.

K2 CO5

PART - C (1 × 15 = 15 Marks)

16. a) i) A plant has two generators supplying the plant by and neither is to be 8 K3 CO4 operated below 20MW or above 135MW. Incremental costs with PG1 and PG2 in MW are dF₁/dP_{G1}=0.14P_{G1}+21 Rs/MWhr dF₂/dP_{G2}=0.225P_{G2}+16.5Rs/MWhr For economic dispatch, build the plant when the demand equals 45MW
ii) Explain the various controls for secure operation. 7 K3 CO5

OR

- b) i) With the help of Flow chart explain Economic dispatch by λ Iteration 8 K2 CO4 method with losses.
 - ii) Write short notes on state estimation? Explain the weighted least square 7 K3 CO5 estimation with the help of flow chart.