		Reg. No.												
	Question Paper Co	de	1	311	1									
	B.E. / B.Tech DEGREE EX	KAMINAT	Oľ	NS,	NOV	V / D	EC 2	2024						
	Fift	h Semester		Í										
	Mechanical and A	utomation	En	gine	erin	g								
	20EEPW501 - ELECTRICAL DRIVES	AND ACT	UA	. TO]	RS V	U VITE	I LA	BO	RAT	ORY				
	Regula	tions - 2020	0											
D	aration: 3 Hours								Ma	Max. Marks: 100				
2	PART - A (MCO)	$(20 \times 1 = 2)$	20 N	Aarl	(25						ĸ			
	Answer Al	L Question	ns	1411						Mark	Evel	со		
1.	If holding current of a thyristor is 2 mA then lat	ching curre	nt s	houl	ld be					1	K2	CO1		
	(a) 0.01 A (b) 0.002 A (c) 0.002 A	9 A		(d)	0.00	04 A								
2.	Which triggering is the most reliable?	~ .								1	K1	CO1		
	(a) Forward voltage triggering (b) (a) $\frac{1}{2}$ (b) (c) $\frac{1}{2}$	Gate trigge	ring	g .										
2	(c) dV / dt triggering (d)	I hermal tri	gge	ering	5					1	K1	COL		
5.	(a) < latching current but greater than holding c	urrent and	oate	- sio	nal i	s ()				1		001		
	(b) less than holding current	un one und	gui	5 515	nar n	50								
	(c) $<$ latching current but greater than holding c	urrent and	gate	e sig	nal is	s pres	ent							
	(d) both (a) and (b)			C										
4.	Which one is most suitable power device for hig	h frequenc	y (>	>100	KH	z) sw	itchi	ng		1	K1	CO1		
	application?													
~	(a) BJT (b) Power MOSFET (c) Schot	ky diode	((d)M	licro	wave	tran	sısto	r	1	VI	cor		
э.	(a) Multimator (b) Crown (c) Ind	aridual		(4)	Da	thaa	nd a			1	Λ1	02		
6	(a) Multimotor (b) Group (c) Ind Which of the following motors is preferred for t	raction wor	·ŀ?	(a)	В0	in a a	na c			1	K1	CO2		
0.	(a) Universal Motor (b) Γ	C. Series I	м. Mot	tor						-				
	(c) Synchronous Motor (d) Th	ree-Phase I	[ndi	ictio	n M	otor								
7.	drive is also called as Line shaft driv	ve.								1	K1	<i>CO2</i>		
	(a) Individual drive (b) Multimotor drive													
	(c) Group Drive (d) None of the above													
8.	Which of the following is essentially needed while selecting a motor?						Ι	KI	<i>CO</i> 2					
0	(a) Pulley (b) Starter (c) Foundation pedal (d) Bearings								1	K I	<i>CO</i> 3			
9.	In dc motor, the rotor is (a) Waldad to the shaft (b) Kayad to the shaft						1	K1	005					
	(c) Soldered to the shaft (d) N	(c) Soldered to the shaft (d) None of the mentioned												
10.	Sparking, is discouraged in a D.C. motor becaus	e								1	K1	CO3		
(a) It increases the input power consumption														
	(b) Commutator gets damaged													
	(c) Both It increases the input power consumption	on and Corr	ımı	itato	r get	s dam	ageo	d						
1.1	(d) None of the mentioned	1 11	•.1			• 1	1		<i>.</i>	1	V1	cor		
11.	. Following D.C. generator will be in a position to build up without any residual magne				etism	1	K1	COS						
	(a) series generator (b) shunt generator													
	(c) compound generator (d) self-excited generator													
12.	Which of the following law/rule can he used to	determine t	he o	lirec	tion	of rot	tatio	n of	D.C.	1	K1	CO3		
	motor?													
	(a) Lenz's law (b)) Faraday's	s lav	N										
	(c) Coulomb's law (d)	Fleming's	left	t-har	nd ru	le								

13.	A pulse can be produce by which means?			K1	<i>CO4</i>
	(a) Microprocessor (b) Tim	(b) Timing Logic			
	(c) Toggle Switch (d) All o	(d) All of the above			
14.	Which of the following is NOT an advantage of ste	epper motors?	1	K1	CO4
	(a) Cost-efficient (b) Main	tenance-free			
	(c) No feedback (d) More	complex circuitry			
15.	If a hybrid stepper motor has a rotor pitch of 36° and	nd a step angle of 9°, the number of its	1	Kl	CO4
	phases must be				
	(a) 4 (b) 2 (c) 3	(d) 6			
16.	What is the step angle of a hybrid stepper motor?	()	1	<i>K1</i>	CO4
	(a) 0.9 degree to 3.6 degree (b) 0.9 d	egree to 7.0 degree			
	(c) 0.1 degree to 1.0 degree (d) 1.0 d	egree to 0.9 degree			
17.	What type of force do linear motors produce?	6	1	K1	CO5
	(a) Torque (b) Linear force (c) Centrifuga	l force (d) Gravitational force			
18.	What type of control loop is typically used in serve	o systems?	1	<i>K1</i>	CO5
101	(a) Open-loop control (b) Closed-loop control				
	c) Feed forward control (d) Proportional control				
19) In which application would you most likely find AC servo drives?				CO5
17.	(a) HVAC systems (b) Conveyor systems				
	(c) CNC machinery (d) Lighting systems				
20	How does a VED control motor speed?				CO5
20.	(a) By changing the mechanical load (b) By varying the mator's temperature				
	(a) By changing the input frequency and voltage	(b) By varying the motor's temperature			
	(c) by adjusting the input frequency and voltage	(a) By adding resistance in the circuit			
	$PART - R(10 \times 2 =$	20 Marks)			
Answer ALL Ouestions					
•			•	77.1	601

21.	What is meant by relay and give its types?	2	K1	<i>CO1</i>
22.	Define the term holding current and latching current.	2	K1	<i>CO1</i>
23.	List out some advantages of electric drives.	2	K1	<i>CO2</i>
24.	What are the factors that influence the choice of electrical drives?	2	K1	<i>CO2</i>
25.	What is the use of H – Bridge Motor Driver?	2	K1	СО3
26.	List out the applications of DC Servo Motor.	2	K1	СО3
27.	What is the step angle of a 4-pole stepper motor with 12 stator teeth and 3 rotor teeth?	2	K1	<i>CO4</i>
28.	Name the various driver circuits used in stepper motor.	2	K1	<i>CO4</i>
29.	Compare AC servomotor with DC servomotor.	2	K2	<i>CO5</i>
30.	Define torque angle.	2	K1	CO5

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31. a) Explain the structure and different modes of operation with the characteristics of 10 K2 CO1 TRIAC.

OR

- b) Illustrate the basic structure of IGBT with its working. Give its equivalent circuit and 10 K2 CO1 explain the turn ON and turn OFF processes.
- 32. a) An induction motor directly connected to a 400V, 50Hz supply utility has a rated ¹⁰ K² CO² torque of 30NM that occurs at speed of 2940 rpm. The motor drives a fan load that can be approximated by T_L = B. ω_m where B=0.05 Nm/rad/s, and rated speed of the motor is 3000 rpm. Stating any assumption made, show the speed, in equilibrium position at which the torque developed by the motor is equal to the load torque.

2

		OR			
	b)	Illustrate the choice of selection of the motor for different loads.	10	K2	CO2
33.	a)	Explain the construction & operation of DC Motor. OR	10	К2	СО3
	b)	A 220V dc shunt motor has an armature resistance of 0.8Ω and field winding resistance of 220 Ω . The motor field characteristic [$k\phi$ versus field current] is shown in figure.	10	K2	<i>CO3</i>

(i) Show the field current.

(ii) If the motor drives a constant load torque of 17.5Nm, show armature current and speed.

34.	a)	Summarize the reluctance torque of a stepper motor.	10	K2	<i>CO4</i>			
	OR							
	b)	Explain the construction and operation of VR stepper motor. Also explain about micro stepping.	10	К2	<i>CO4</i>			
35.	a)	Explain the construction & operation of permanent magnet synchronous motor.	10	K2	CO5			
		OR						
	b)	Illustrate the construction & operation of linear electrical motor.	10	K2	CO5			
36.	a) i)	Explain the drive circuits for stepper motor and their characteristics.	5	K2	<i>CO</i> 4			
	ii)	Compare AC servo motor and DC servo motor.	5	K2	CO5			
		OR						
	b) i)	Outline in detail the bipolar dives for stepper motors.	5	K2	<i>CO4</i>			
	ii)	A 5phase, 400V, 50Hz, 6pole star connected round rotor synchronous motor has $Zs=0+j4\Omega$ Load torque proportional to speed squared is 540Nm at rated synchronous speed. The speed of the motor is lowered by keeping v/f constant and maintaining unity power factor by field control of the motor. For the motor operation at 600 rpm, show a) supply voltage b) armature current c) excitation angle.	5	K2	<i>CO5</i>			