		Reg. No.										
	Question Paper Code	12703										
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024												

Sixth Semester

Electrical and Electronics Engineering

20EEPW601 - EMBEDDED SYSTEMS AND IoT WITH LABORATORY

Regulations - 2020

Duration: 3 Hours Ma		: 100
PART - A (10 × 2 = 20 Marks) Answer ALL Questions		K– Level CO
1. Sketch the block diagram of Embedded system.	2	K3 CO1
2. Indicate the functions of Real time clock.	2	K1 CO1
3. Mention different models used for the development of an embedded system.	. 2	K1 CO2
4. Discuss about Industrial Internet of Things.	2	K1 CO2
5. Infer the features of CAN and SPI serial interfaces.	2	K2 CO3
6. Draw and label the I^2C bus frame format.	2	K3 CO3
7. Define semaphore signaling.	2	K1 CO4
8. Interpret is cause and effect of dead lock condition in RTOS.	2	K3 CO4
9. List some evident examples of Real time embedded application.	2	K1 CO5
10. Sketch the block diagram of Smart meter.	2	K3 CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

- 11. a) i) Interpret the possible steps are involved in build process of embedded 7 K3 CO1 control systems.
 - ii) Discuss the structural units in embedded processor. How a processor is 6 K3 CO1 selected for an embedded application?

OR

- b) Discuss the concept and block diagram of DMA with a neat sketch also ¹³ K³ CO1 explain how the data is transferred between memory and I/O devices using DMA controller.
- 12. a) Discuss the significance of IoT in embedded systems and also discuss ¹³ K2 CO2 functions of sensors and actuators in Embedded system.

OR

b) Discuss the importance, types of services and models of Cloud 13 K2 CO2 computing.

- 13. a) i) Summarize the I/O devices used in Embedded system. 7 K2 CO3
 - ii) Distinguish the features, merits of data transfer using serial and 6 K2 CO3 parallel port/devices.

OR

- b) Elaborate the functionalities of RS232 and RS485 standard serial ¹³ K² CO³ interface with neat diagram also mention the limitations.
- 14. a) Explain the Task, Process and Threads of RTOS with their types and ¹³ K2 CO4 examples.

OR

- b) Explain the interrupt routines are handled by RTOS and illustrate the ¹³ K² CO4 features of μ C/OS RTOS.
- 15. a) Design architectural hardware and software units of Smart meter also ¹³ K4 CO5 mention the challenges and advantages.

OR

b) Discuss the concept, functions and operation of Smart grid with neat ¹³ K4 CO5 sketch also mention the advantages.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Analyze the critical section service by a preemptive and Non- ¹⁵ K2 CO4 Preemptive scheduler and discuss its action.

OR

b) What is IPC? Mention the two methods available for it. Explain in ¹⁵ K2 CO4 detail about message queues.

12703