	Reg. No.							
	Question Paper Code12872							
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 202	4						
Third Semester								
Electronics and Instrumentation Engineering								
	20EIPC301 - ELECTRICAL AND ELECTRONIC MEASUREMEN	TS						
	Regulations - 2020							
Dui	ration: 3 Hours Max.	Ma	rks: 100)				
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K– Level CO	9				
1.	State the principle of loss of charge method for resistance measurement.	2	KI CO)]				
2.	Recall how to convert basic instruments in PMMC into higher range ammeter.	2	K2 CO)]				
3.	Define creeping.	2	KI CO)2				
4.	List out the various types of errors present in a dynamometer type wattmeter.	2	KI CO)2				
5.	Define ratio correction factor in instrument transformer.	2	KI CO)3				
6.	Define the term Standardization.	2	KI CO)3				
7.	Define Q meters.	2	KI CO)4				
8.	State the basic working principle of LCR meters.	2	KI CO)4				
9.	Mention the different materials used in LED.	2	KI CO)5				
10.	Define the deflection sensitivity of CRT.	2	K1 CO)5				
	PART - B (5 × 13 = 65 Marks)							

Answer ALL Questions

11.	a)	Describe with neat diagram the construction and working principle of	13	K2	C01
		attraction and repulsion type MI instruments.			

OR

b) i)	Describe the working of Schering bridge for the measurement	of	8	K2	<i>CO1</i>
ii)	capacitance with neat diagram. Derive the equations for capacitance and dissipation factor.		5	K2	C01

12. a) Explain the construction and working of induction type single phase ¹³ K² CO² energy meter.

OR

- b) i) Define phantom loading testing of energy meters. Explain how it is 7 K2 CO2 more advantageous than testing with direct loading.
 - ii) Explain the construction and working of LPF wattmeter. 6 K2 CO2

12872

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13. a) Describe with neat sketch the working of Drysdale polar type AC ¹³ K² CO³ potentiometer.

OR

- b) State the working principle of Potential Transformer in detail and ¹³ K² CO³ derive the equation of transformation ratio and phase angle.
- 14. a) With neat diagram explain the working of Wave analyzers. 13 K2 CO4

OR

- b) With neat diagram explain about Digital Time measurement. 13 K2 CO4
- 15. a) Describe the construction and working of LCD's, mention the *xx K2 CO5* difference between light scattering and field effect types of LCD's and also compare the advantages of LCDs with other display devices.

OR

b) Explain about IOT Enable based Recorders in detail. 13 K2 CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

a) Sketch the circuit diagram of Anderson's bridge. Derive the equations ¹⁵ K² CO1 for resistive and inductive components of the inductor to be measured. State the advantages of Anderson bridge.

OR

b) Explain with neat diagram about Microprocessor based Digital ¹⁵ K2 CO4 Multimeter with auto ranging and self diagnostic features.