	Reg. No.			
	Question Paper Code12346			
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023 Third Semester Electronics and Instrumentation Engineering				
(Common to Instrumentation and Control Engineering)				
20EIPC302 - SENSORS AND TRANSDUCERS				
Dur	(Regulations 2020) ation: 3 Hours Max. Ma	arks: 100		
PART - A (10 × 2 = 20 Marks) Answer ALL Questions				
1.	Define Standards and Classify Standards.	Marks, K-Level, CO 2,K1,CO1		
2.	List the factors responsible for selection of a transducer.	2,K2,CO1		
3.	Define damping ratio.	2,K1,CO2		
4.	Differentiate time response characteristics from frequency response characteristics.	e 2,K2,CO2		
5.	Differentiate stress and strain.	2,K2,CO3		
6.	Define Poisson's ratio.	2,K1,CO3		
7.	Define LVDT.	2,K1,CO4		
8.	State the desirable features of a capacitive transducer.	2,K1,CO4		
9.	Compare and contrast digital and analog transducers.	2,K2,CO5		
10.	State the basic principle of hall effect transducers.	2,K1,CO5		

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Explain the functional blocks of a measurement system with a neat ^{13,K2,CO1} diagram.

OR

- b) The following values were obtained from the measurements of the ^{13,K3,CO1} value of EMF(in volts)
 3.525,3.510,3.531,3.544,3.562,3.570,3.558,3.586,3.591,3.549.
 Determine (i) Arithmetic mean (ii)Average deviation (iii) Standard deviation (iv) Variance (v) Probable error.
- 12. a) Derive the Step response of the Second order system for under ^{13,K2,CO2} damped.

OR

	b)	(i) Explain different types of input signals.	6,K2,CO2	
	,	(ii) Derive the Sinusoidal response of the first order system.	7,K2,CO2	
13.	a)	With a neat diagram explain the principle and construction details of linear and circular potentiometer.	13,K2,CO3	
	b)	(i) Derive the error equation of potentiometer with load.	6,K2,CO3	
	0)	(ii) Derive the Gauge factor of strain gauge.	7,K2,CO3	
		(ii) Derive the Gudge factor of strain gadge.	7,112,005	
14.	a)	Describe the principle of operation, construction details, and characteristics of LVDT.	13,K2,CO4	
OR				
	b)	(i) Write short notes on EI Pick up.	6,K2,CO4	
		(ii) Explain the principle of microsyn.	7,K2,CO4	
15.	a)	Explain how the displacement of a structural element can be determined using Hall effect sensors. OR	13,K2,CO5	
	b)	Explain the construction and working of Fiber optic sensors.	13,K2,CO5	
PART - C (1 × 15 = 15 Marks)				
16	``		9 K2 CO4	

16. a) (i) An LVDT is employed for measuring the deflection of a bellow. The ^{8,K3,CO4} sensitivity of LVDT is 60 V/mm . The bellow is deflected by 0.15mm by a pressure of 1.2x10⁶N/m. Determine the sensitivity of LVDT in V/ N/m² and the pressure when the output voltage is 4.5V.
(ii) A capacitive transducer has two plates of area 15cm² each, separated ^{7,K3,CO4} by an air gap of 2mm thickness. Find the displacement sensitivity due to gap change.

OR

b) Describe MEMS technology. Explain different manufacturing *15,K2,C05* processes for MEMS.