		Reg. No	•											
	Question Paper Co	de	13209		1			<u> </u>	- 1					
						X 7 / 1	рт		0.2.4					
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024													
	Thir	d Semeste	r											
	Electronics and Inst	rumentat	ion I	Eng	inee	ring	5							
	(Common to Instrumenta	tion and C	Contr	ol E	Engir	neeri	ing	;)						
	20EIPC302 - SENSOI	RS AND T	FRA	NS	DUC	CER	S							
	Regula	tions - 202	20											
D	uration: 3 Hours									Max	. M	arks	s: 1(00
	PART - A (MCO)	$(20 \times 1 =$	20 N	lar	ks)								K–	~~
	Answer AI	L Questio	ons		,						Mar	ks L	evel	<i>co</i>
1.	A meter reads 115.50 V and the true value of the	e voltage	is 11	5.4	4 V.	Det	err	nine	the	static	1		K3	C01
	error for the instrument.													
•	(a) $0.02V$ (b) $0.03V$ (c)	0.04V	0.0.1		1	(0	1) (0.06	V	1.	,		V)	<i>c</i> 01
2.	A 0-250 V voltmeter has a guaranteed accuracy	y of 2% o	t tul	l-sc	ale 1	ead	ıng	g. Th	ne v	oltage	1		κ3	COI
	measured by the voltmeter is 150 volts. Determine $(a) 0.015$ (b) 0.025 (c)	0.0222	iting	err	or in	$\frac{1}{1}$ per	cei	ntag 75	e.					
3	The measured value of a capacitor is 205.3	U.USSS uF when	-95 i	ts	u) True	1) U. Va	UJ hie	/J is	201	4 uF	1		K3	C01
5.	Determine the relative error.	μι, where	cus 1	15	True	va.	luc	15	201	· τ μι .				
	(a) 0.0194 (b) 0.0294	(c) 0.0	356				(d)	0.0	55					
4.	The calibration procedures involve a com	parison c	of th	e	parti	icula	ar	cha	ract	eristic	1		K2	COI
	withwith a higher acc	curacy that	n the	ins	strum	nent	to	be c	alib	rated,				
	or an instrument of known accuracy.													
	(a) a primary standard	(b	(b) a secondary standard											
~	(c) Both primary and secondary standard	. (d)	(d) None of the mentioned				1		va	cor				
э.	Find out the mean value of a distance observation $(2, 2, 212, 2, 11, 2, 07)$	ion set tak	t taken by the distance measurement			ement	1		Λ2	02				
	sensor, Observations $- \{3, 3, 213, 3, 11, 2.9\}$	(c) 3 125				(J)	3 (1225						
6	Let us consider the observation taken by an infu	(c) 3.123	or w	hicl	h nre	(u) dict	s tl	he d	istai	nce of	· 1		K2	<i>CO2</i>
0.	an object to be 3.32 cm but the actual value is 3.	1 cm. find	find the relative error percentage? (d) 0.0709											
	(a) 0.01 (b) 0.06 (c) 0).12					5							
7.	Which of the following are related to passive tra	insducer									1		K2	<i>CO2</i>
	(a) Passive transducer cannot work in the absence	ce of exter	nal p	ow	er									
	(b) Passive transducer can work in the absence of	of external	pow	er										
	(c) Velocity can transducer using passive transd	lucer												
0	(d) None of the mentioned are related	a a 11 a d 9									1		кî	co^{2}
ð.	(a) Off set (b) Drift	called? (c) S^{2}	nan					(d)	R ai	100	1		Π2	002
9	is the most commonly	v used me	pan etal f	or 1	RTD	s dr	ie 1	to it	s sta	ability	1		K2	CO3
<i>.</i>	and nearly linear temperature.	y used inc	<i>i</i> ui 1	01 1		5 40		.0 11	5 54	ionney				
	(a) Platinum (b) Nickel	(c) Coppe	er		(d) T	un	gste	n					
10.	The resistance of a thermistor is 500 and its res	sistance te	mpei	atu	re co	seffi	icie	ent i	s 0.0	04/°C.	1		K2	CO3
	A measurement with a lead resistance of 10 ohm	n will caus	e an	err	or of			0						
	(a) 0.05° C (b) 0.01° C	(c) 0.4°	С			. (ċ	l) (0.8°	С		-			
11.	For a certain thermistor, the material constant (E	3) is 3,000	Kelv	vin	and	ts r	esi	stan	ce at	t 27	Ι		К2	<i>CO3</i>
	U is 1,050 ohm. What is the temperature coefficiency $(a) = 0.022 + 10 \text{ ohm}/C$	1ent of res	istan	ces	$\frac{10}{2}$	nıs	the	rmis	stor					
	(a) 0.055 10 0 mm/o mm/C (b) (c) -3.33 obm/o hm/C (d)	-0.055 of -3.0 ohm/	ni/on	111/9 /C										
	(u)	5.0 0mm/	Jun	\sim										

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

12.	What does a decrease in electrical resistance signify in the functioning of a strain gauge? (a) The object is under compression (b) The object is being stretched								
13.	 (c) The object has reached its elastic limit (d) The object is experiencing no stress Induction potentiometers are normally designed for use at excitation frequencies of 50Hz or 400Hz providing sensitivities of the order of								
	rotation.								
14.	(a) 1volt/degree (b) 2volt/degree (c) 5volt/degree (d) 10volt/degree The need for provision of a pair of slip rings and brushes to deliver the output signal makes the induction potentiometer less popular for which the range of measurement is	1	K2	CO4					
	limited to								
	(a) $\pm 5^{\circ}$ (b) $\pm 10^{\circ}$ (c) $\pm 15^{\circ}$ (d) $\pm 25^{\circ}$,	_V 2	<i>CO</i> 1					
15.	Maximum voltage is induced in a stator winding of a synchro transmitter when the rotor	1	K2	C <i>0</i> 4					
	and the stator winding have what angle between them. (a) 00 degrees (d) 0 degrees (d) 0 degrees								
16	(a) 90 degrees (b) 60 degrees (c) 50 degrees (d) 0 degrees	1	К2	CO4					
10.	cylindrical electrodes used in an electrode assembly	1	112	007					
	(a) One (b) Two (c) Three (d) Four								
17	A piezoelectric crystal has a thickness of 2.5 mm and a voltage sensitivity of 0.05 Vm/N	1	K2	CO5					
17.	The piezoelectric crystal is subjected to an external pressure of 1.6×106 N/m ² , then the								
	corresponding output voltage is								
	(a) 200 volts (b) 3.2×109 volts/m of thickness								
	(c) $0.07 \times 10^{-9} \text{ V/(m^3/New)}$ (d) 200 m volts								
18.	Calculate the Hall Effect coefficient when number of electrons in a semiconductor is 1020	1	K2	<i>CO5</i>					
	(a) 0.625 (b) 0.0625 (c) 6.25 (d) 62.5								
19.	On the bases of application of optic fiber sensor, which of the following is not considered	1	K2	<i>CO5</i>					
	to be the classification of fiber optic sensor?								
	(a) biomedical/photometric sensors (b) physical sensors								
	(c) thermal sensors (d) chemical sensors								
20.	MEMS consist of	1	Kl	CO5					
	(a) Mechanical microstructure (b) Microsensors								
	(c) Microactuator (d) All of the mentioned								
PART - B ($10 \times 2 = 20$ Marks)									
	Answer ALL Questions								
21.	Draw the functional block diagram of a measurement system.	2	K1	<i>CO1</i>					
22.	Define Absolute Unit.	2	K1	<i>CO1</i>					
23.	Define static characteristics.	2	K1	CO2					
24.	Define the unit of mass preserved at the International Bureau of weights and measures at	2	K2	CO2					
25	Severs, Near Paris.	2	V1	<i>c</i> 02					
25.	Mention the different types of strain gauge.	2		<i>CO3</i>					
26. 27	List the desirable features of a comparitive transducer			CO4					
27. 20	List the desirable features of a capacitive transducer.								
∠ð. 20	List the properties of piezoelectric crystals								
∠9. 30	Compare MEMS sensors and Nano Sensors	2	K?	C05					
50.	Compare millions sensors and mano sensors.	-	112	000					
	PART - C (6 × 10 = 60 Marks)								
	Answer ALL Questions								
31.	a) Discuss about the classification of transducers based on different characteristics.	10	K2	<i>CO1</i>					

OR

b) A mercury thermometer has a capillary tube of 0.3mm diameter. If the bulb is made K3 CO1 10 of zero expansion material, what value must it have, if a sensitivity of 3mm/C° is desired? Assume operating temperature to be 20° C and coefficient of volumetric expansion of mercury is 0.181×10^{-3} .

13209

32.	a)	Discuss about the static characteristics.	10	K2	CO2
		OR			
	b)	Derive equations for response of a second order system when subjected to unit Step input.	10	K2	<i>CO2</i>
33.	a)	Define gauge factor. Derive the expression for gauge factor in strain gauge.	10	К2	СО3
	b)	Describe the principle of operation and constructional details of resistance thermometers.	10	К2	СО3
34.	a)	Describe the principle of operation, construction details, and characteristics of LVDT.	10	К2	<i>CO4</i>
		OR			
	b)	Explain how capacitance of capacitive transducers can be varied. Also explain how it can be used for level measurement.	10	К2	CO4
35.	a)	Describe MEMS technology. Explain different manufacturing processes for MEMS.	10	K2	CO5
	b)	Describe the principle of operation of Hall effect transducers. Discuss about its current sensing application.	10	K2	CO5
36.	a) i)	Describe the construction and working of a capacitor microphone.	5	K2	<i>CO4</i>
	ii)	Explain the working principle of LASER Sensor in detail.	5	K2	CO5
		OR			
	b) i)	Explain the Construction and working principle of Proximity sensor.	5	K2	<i>CO4</i>
	ii)	Explain the working principle of Film Sensor.	5	K2	CO5