	Reg. No	•												
	Question Paper Code		1	285	7									
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024														
	Third Semester													
Electronics and Instrumentation Engineering														
(Common to Instrumentation and Control Engineering)														
20EIPC302 - SENSORS AND TRANSDUCERS														
	Regulations - 2020													
Du	ration: 3 Hours								Ma	ax.	Maı	rks:	100	
	PART - A (10 × 2 Answer ALL (rks))						Mark	K– ^{KS} Leve	, co	
1.	List three sources of possible errors in instru	~									2	K2	COI	,
2.	Define an Inverse transducer. Give an examp	ole.									2	K1	COI	,
3.	Obtain the steady state error for the first ord step input.	er s	ysten	ı wł	nen	Sub	ject	ed to	o u	init	2	K2	<i>CO2</i>	!
4.	List out the standard test inputs in measurem	ent.									2	K2	CO2	2
5.	Define gauge factor.										2	K2	COS	!
6.	Compare Bonded and Unbounded Strain Ga	ige.									2	K2	COS	ł
7.	List the advantages and disadvantages of LV	DT.									2	K2	CO4	!
8.	Mention few applications of capacitive trans	duce	ers.								2	K2	CO4	!
9.	Name the different types of Magneto elastic	tran	sduce	ers.							2	K2	COS	
10.	Mention some of the applications of Piezo el	ectr	ic tra	nsdı	ice	rs.					2	K2	COS	
	PART - B (5 × 13 Answer ALL (1									

Answer ALL Questions

11.	a)	a) Classify standards and give examples for each level of standard.					
OR							
	• •		10	VA COL			

- In a test temperature is measured 100 times with variations in apparatus 13 K3 CO1 b) and procedures. After applying the corrections, the results are: Temperature: 397 398 399 400 401 402 403 404 405 Frequency : 1 3 12 23 37 16 4 2 2 Calculate the arithmetic mean, the average deviation, the standard deviation and the probable error.
- 12. a) Derive the Step response of the Second order system for Critically ¹³ K² CO² damped system.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

b) i) Explain the different time specifications.	6	K2 CO2			
ii) Obtain the frequency response of first order system.	7	K2 CO2			
13. a) i) Discuss the principle of operation and application of piezo resistive transducer.					
ii) Explain humidity measurement.	5	K2 CO3			
OR					
b) Illustrate the construction, working principle, characteristics an applications of thermistor.	d 13	K2 CO3			
14. a) Explain the principle of operation and construction of induction typ transducers and its applications. OR	e 13	K2 CO4			
	13	K2 CO4			
b) Describe the principle of operation of variable reluctance transducers.		K2 CO5			
15. a) Describe the working principle of Magneto elastic sensor in detail.	15	K2 COJ			
OR					
b) Explain two different types of Digital transducers in detail.	13	K2 CO5			

PART - C (1 × 15 = 15 Marks)

16. a) i) A parallel plate capacitive transducer with air dielectric having an area ¹⁰ K3 CO4 of 600 sq-mm is separated by a distance of 0.2mm. Calculate the change in capacitance if a linear displacement reduces the distance between the plates to 0.15mm. Assume permittivity of free space to be 8.85×10^{-12} F/m.

ii) The output of an LVDT is 10V for a displacement of 12.5mm. ⁵ K3 CO4 Determine the output voltage for a core displacement of 10mm.

OR

b) Describe the principle of operation, construction details, and ¹⁵ K2 CO5 characteristics of Piezoelectric transducer and derive an expression for voltage sensitivity.