		Reg. 1	No.										
	Question Paper Cod	e		131	28		7						
	DE / D Took DECDEE EV		IATI	ONG	z N	ov	 / DE		174				
D.E. / D. IECH DEGREE EAAMINATIONS, NOV / DEC 2024 Third Semaster													
	Tind Mashariasland Av	Seme		·									
		omat	non r	ngn NG(ring				C			
	20EIPC304 - BASIC ELECTRO	NICS	ANI		DNT	RO	LS	YSTI	<u>C</u> IVI	S			
	Regulation	ons - 2	2020										
Dura	ation: 3 Hours									Ma	ıx. M	larks:	100
	PART - A (MCQ) (20 × 1 = 20 Marks)					Marl	K –	со					
	Answer ALL	Que	stions	5								" Level	60
1.	The UJT may be used as		• ~	(1)	•	т	6.4	1			1	KI	COI
C	(a) A amplifier (b) A sawtooth generator (c) A The "latching surrout" in an SCD refers to	A rect	ifier	(d)	Ν	lone	of th	ie ab	ove		1	K?	COL
۷.	(a) The current at which the device turns off										1	<u>K2</u>	001
	(a) The current at which the device turns on												
	(c) The maximum current that the device can hand	ile											
	(d) The minimum current that the device can hand	lle											
3.	What does MOSFET stands for?										1	K2	COI
	(a) Metal Oxide Semiconductor Field Effect Trans	sistor											
	(b) Modern Oxidized Silicon based Field Effect T	ransis	stor										
	(c) Modern Oxidized Silicon based Force Effect T	ransi	stor										
4	(d) Metal Oxide silicon Field Equivalent Transisto	or									1	VI	<i>CO</i> 1
4.	SUR is abbreviated as (b) Silicon controlled meetifican			tin a		: C	_				1	Λ1	COI
	(a) Silicon controlled register (b) Silic	$\cos \alpha f t$	ho ob	ung	reci	liner							
5	The circuit in which the output voltage waveform	is the	inte	ove mal (of th	ne ini	nut x	olta	Je		1	K1	CO2
5.	waveform is called	15 110	me	Siar	51 11	ie mj	pui	onug	50				
	(a) Integrator (b) Differentiator (c) Phase shi	ft osci	illato	: ((1) S	quar	e wa	ve g	ene	rator			
6.	This circuit is an example of a(n) .			``	/	1		υ			1	K2	<i>CO2</i>
	V ₂ +												
	R		R	\sim									
		~	->-			vo							
	R R	Į Į	~										
	V1 +	Ţ											
	(a) dc voltmeter (b) display driver (c) instrume	ntatio	n am	plifi	er	(d) 1	None	e of t	he a	above	:		
7.	A class A power amplifier uses transist	or(s).		L							1	K2	<i>CO2</i>
	(a) 2 (b) 1	(c) 3					(d)	4					
8.	Both negative and positive feedback is present in		0	scilla	ator.						1	K1	CO2
	(a) RC phase shift oscillator (b) W	ien b	ridge	osci	llato	or							
0	(c) Twin T oscillators (d) Ci	ystal	oscil	lator	· •	1 1 .					1	V1	<i>c</i> 02
9.	How many control lines are present in analog to d	igital	conv	erter	: 1n a	addit	tion	to rei	ere	nce	1	ΛI	COS
	(a) Three (b) Two (c) One		(d) N	one	oft	he m	enti	oned					
10	The order of output resistance of 741 OPAMP is			one	σιt		i ciiti	oncu			1	K2	CO3
10.	(a) 0.1 Ω to 10 Ω (b) 10 Ω to 105 k Ω (c) 10) ×102	$3 \Omega to$	o 109	9Ω	(d)) 103	$S \Omega to$	o 10)6 Ω.			
11.	Find out the resolution of 8 bit DAC/ADC?				-	()	,			_,	1	K1	CO3
	(a) 562 (b) 625 (c) 256				(c	1) 26	5					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

12.	Express the output voltage of digital to analog converter? (a) Vo =KVFS(d12-1+d22-2+dn2-n) (b) Vo =VFS/k(d12-1+d22-2+dn2-n) (c) Vo =VFS(d12-1+d22-2+dn2-n) (d) Vo =K(d12-1+d22-2+dn2-n)	1	К2	СО3		
13.	In control system block diagrams, which mathematical operation is performed at summing points?	1	K2	<i>CO4</i>		
14.	 (a) Addition or subtraction (b) Multiplication (c) Integration (d) Differentiation (d) Differentiation (e) Two loops that share a node (f) Two loops that share a branch (f) Two loops that share a branch (g) Two loops that share a branch (h) Two loops that share any common nodes 					
15.	In a mechanical rotational system, which of the following is analogous to electrical resistance?	1	K1	<i>CO4</i>		
16.	 (a) Moment of inertia (b) Damping coefficient (c) Angular displacement (d) Stiffness The transfer function of a system is defined as the ratio of the: (a) Output response to the input disturbance (b) Laplace transform of the output to the Laplace transform of the input 	1	K1	CO4		
	(c) Input to the feedback element					
17.	Which of the following is NOT a standard test signal used in control systems? (a) Unit Step (b) Unit Impulse (c) Sine Wave (d) Triangular Wave	1	K2	CO5		
18.	In a second-order under damped system, the overshoot depends on: (a) The natural frequency only (b) The damping ratio only (c) Both the natural frequency and damping ratio (d) None of the above	1	K1	CO5		
19.	The time required for the response to reach and stay within a specified percentage of its final value is:	1	K1	CO5		
20.	(a) Peak time(b) Delay time(c) Settling time(d) Rise timeIf the damping ratio (ζ) of a second-order system is less than 1, the system is:(a) Underdamped(b) Critically damped(c) Overdamped(d) Undamped(a) Underdamped(b) Critically damped(c) Overdamped(d) Undamped(d) UndampedPART - B (10 × 2 = 20 Marks)	1	K1	CO5		
0.1	Answer ALL Questions	2	V^{1}	COL		
21.	Define Knee Voltage of a diode.	2	KI K2	col		
22.	Draw the symbol and VI characteristics of SCR.		K2	<i>cor</i>		
23.	. Define CMRR of an op-amp.		KI VI	<i>CO2</i>		
24.	. Mention the Classifications of Oscillators.			<i>CO2</i>		
25.	. Justify the purpose of a filter in analog circuits.			<i>CO3</i>		
26.	List out the main applications of DACs in electronic systems.		Kl	CO3		
27.	What is block diagram? Mention the basic components of block diagram.		K2	CO4		
28.	Formulate the force balance equation for mass, ideal dash pot and ideal spring element.		K2	<i>CO4</i>		
29.	State poles and zeros of the system.			<i>CO5</i>		
30.	Define damping ratio and how the system is classified on the value of damping.	2	K1	<i>CO5</i>		
	$PART - C (6 \times 10 = 60 Marks)$					
21	Answer ALL Questions	5	٧٦	<i>c</i> 01		
31.	 a) 1) Describe the working, operation and characteristics of N- channel JFET with neat sketch. ii) Discuss the working, operation and characteristics of Darletian MOSEET. 	5	К2 К2	C01		
	11) Discuss the working, operation and characteristics of Depletion MOSFET.	5	K2	COI		
	b) Demonstrate the working, operation and characteristics of UJT with relevant diagrams.	10	К2	<i>CO1</i>		
32.	a) Explain Integrator with neat sketch.	10	K2	<i>CO2</i>		
OR						
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2						

- b) With a neat diagram explain about Hartley oscillator & derive the expression for ¹⁰ K² CO² frequency of oscillation and condition of oscillation.
- 33. a) Describe the design and operation of a peak detector circuit. Explain its ¹⁰ K² CO³ applications in signal processing and instrumentation, and how its performance can be optimized.

OR

- b) Explain the operation of Successive Approximation type ADC.Discuss their design, 10 K2 CO3 advantages, disadvantages, and how they are used in practical applications.
- 34. a) Write the differential equations governing the mechanical rotational system shown ¹⁰ K³ CO⁴ in figure. Draw the torque-voltage and torque-current electrical analogous circuits and verify by writing mesh and node equations.

OR

b) Calculate the overall gain C(s)/R(s) for the signal flow graph shown in fig.1 10 K3 CO4

- 35. a) Derive the expressions for Time domain specifications with unit step input. 10 K2 CO5
 - OR
 - b) The unity feedback system is characterized by an open loop transfer function $10 \ K2 \ CO5$ G(s)= K/s(s+10). Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and peak time for a unit step input.
- 36. a) Compute the differential equations governing the mechanical system shown in fig. 10 K3 CO4 and determine the transfer function.

b) Derive the expression and draw the response of second order system for critically 10 K2 CO5 damped case with unit step input.