			Reg. No.										
	Question Pap	er Code	12636										
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024												
Fourth Semester													
Electronics and Instrumentation Engineering													
(Common to Instrumentation and Control Engineering)													
20EIPC401 - ELECTRICAL MACHINES													
Regulations - 2020													
Duration: 3 Hours Max. M								x. M	1arks: 100				
PART - A (10 × 2 = 20 Marks) Answer ALL Questions							Marks	, K– Level	со				
1.	Define Back emf in a D.C. Motor.								2	K1	CO1		
2.	Which method is preferred for co above the rated speed? Justify.	ntrolling 1	he speed o	of D	OC s	hur	nt m	otor	2	K2	<i>CO1</i>		
3.	List out the merits and demerits of c	ore and sh	ell type trar	nsfo	orme	r.			2	Kl	<i>CO2</i>		
4.	Why the transformer rated in KVA?	Justify.							2	K2	<i>CO2</i>		
5.	Why the 3-phase synchronous moto	r will alwa	iys run at sy	nch	nron	ous	spee	ed?	2	K1	CO3		
6.	What does hunting of synchronous a	motor mea	n?						2	Kl	CO3		
7.	Define Pullout torque.								2	Kl	<i>CO4</i>		
8.	List the applications of 3-phase indu	action mot	or.						2	Kl	<i>CO4</i>		
9.	Discuss the double revolving field the	heory.							2	K1	<i>CO5</i>		
10.	What is the principle of reluctance r	notor?							2	Kl	<i>CO</i> 5		

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) With neat diagram explain the principle, construction and working of ¹³ K² CO1 DC Motor and its characteristics.

OR

- b) Explain the different methods of excitation and characteristics of a DC ¹³ ^{K2} ^{CO1} Motors with suitable diagrams
- 12. a) Explain the construction, working principle and operation of a ¹³ K³ CO² transformer. Derive its emf equation.

OR

b) A single phase transformer has 180 turns respectively in its secondary ¹³ K³ CO² and primary windings. The respective resistances are 0.233 and 0.067. Calculate the equivalent resistance of (a) the primary in terms of the secondary winding (b) the secondary in terms of the primary winding (c) the total resistance of the transformer in terms of the primary.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12636

13. a) Draw the simplified equivalent circuit of synchronous motor and ¹³ K2 CO3 examine the effect of loading in synchronous motor at various power factors with help of phasor diagrams.

OR

- b) Illustrate the production of rotating magnetic field in two phase ¹³ K² CO³ supply.
- 14. a) Sketch and Explain the torque slip characteristics of 3 phase cage and ¹³ K2 CO4 slip-ring induction motors.

OR

- b) Describe the construction and working principle of 3 phase induction ¹³ K2 CO4 motor.
- 15. a) Give the classification of single phase motors. Explain any two types ¹³ K² CO5 of single phase induction motors.

OR

b) Discuss the construction, operation and characteristics of the ¹³ K2 CO5 following:

(i) Repulsion motor.

(ii) Shaded Pole Motor.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a) i)	Explain any 2 starting methods of three-phase induction motor.	8	K2 CO4
	ii)	Explain the construction and working principle of hysteresis motor.	7	K2 CO5
		OR		
	b) i)	Explain any one speed control of induction motor from stator side.	8	K2 CO4
	ii)	Explain the construction and working principle of Universal motor.	7	K2 CO5