				Re	g. No.									
			Question Pape	12475										
B.E. / B.Tech DEGREE EXAMINATIONS. NOV / DEC 2023														
			F	ifth Sem	ester	,			-	-				
		Ε	lectronics and I	nstrume	ntation	Eng	inee	erir	ıg					
		(Con	nmon to Instrume	ntation a	and Con	trol E	Engi	nee	ering)					
		20 H	CIPC503 - DIGI	FAL SIG	GNAL I	PRO	CES	SSI	NG					
			(Reg	gulations	s 2020)									
Dur	ration	: 3 Hours								Max	x. N	Aarks	s: 10	0
			PART - A	$(10 \times 2$	= 20 M	arks)							
			Answe	er ALL (Question	ıs							Ma	rks.
1	г	4	1 1 .									k	K-Lev	el, CO
1.	Exp	Express the sampling techniques.										2, KI,		
2. 2	L1S	List few applications of Digital Signal Processing.										2, K1, CO1		
з. ₄	From the reversal property of Z transform. Solve and obtain the DTET of the converse $y_{1}(x) = (1, 1, 0, 0)$											2,K2,	CO_2	
4. 5	Solve and obtain the DTFT of the sequence $x(n) = \{1, 1, 0, 0\}$. What is Twiddle feater and Express its magnitude and shape and the											2,K2,	CO2	
з. с	what is 1 widdle factor and Express its magnitude and phase angle.											2,K1,	COS	
б. 7	Draw the basic butterfly diagram for Radix 2 DIF FF1.											2,K2,	CO3	
/.	Define warping effect.											2,KI,CO4		
8. 0	Define linear phase response of a filter?											2,K1,C04		
9. 10	Ivanie some fixed point processor and floating point processor.											2,KI,COS		
10.	L1S	t the various t	ypes of addressir	ig modes	s of DSI	proc	cess	or.					2,11,	COS
			PART - B Answ	(5 × 13 er ALL (= 65 M Question	arks) n)							
11.	a)	A discrete ti (i) Static or (iii) Time in (v) Causal o the propertie	me systems can be dynamic (ii) Lir variant or time van r non causal. And so above : $y(n) = x$	be hear or no arying (if alyze the $x(n^2)$ (2) OR	on Linea (v) Stab follow) y(n)=x	ar le or ing sy x ² (n)	unst yste (3)	tabl m v y(1	le with 1 n)= co	esp os(x	ect x(n)	to)).	13,K2	',CO1
	b) Find the energy and power signal										13,K2	,CO1		
	(i) $x(n) = \left(\frac{1}{2}\right)^n u(n)$													
		(i) $x(n) =$	$\sin\frac{\pi}{4}$ n											
12.	a)	Find the line $x(n) = \{1, 2\}$	ear convolution o 2, 3, 4} and h (f two sec n) = {2, 4	uences 4, 6, 8}.							-	13,K2	,CO2

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1 12475 OR

b) (i) Find inverse Z-Transform X (Z) using Residue method $X(Z) = \frac{Z^2}{(Z-a)^2(Z-b)}$

6.K2.CO2

- (ii) State and prove Final Value Theorem.
- 13. a) Find the DFT of a sequence. $x(n) = \{2,1,2,1,1,2,1,2\}$ Plot its ^{13,K2,CO3} magnitude and phase response.

OR

- b) Compute the FFT of the sequence $x(n)=n^2+1$ for $0 \le n \le N-1$, where ^{13,K2,CO3} N=8 using DIF algorithm.
- 14. a) The specification of LPF is given by $0.8 \le |H(\omega)| \le 1$; $0 \le \omega \le 0.2\pi$ $|H(\omega)| \le 0.2$; $0.32\pi \le \omega \le \pi$

Design Chebyshev filter using IIT.

OR

- b) Design a low pass filter using rectangular window by taking 9 samples 13,K3,CO4 of w(n) and with a cutoff frequency of 1.2 radians/sec.
- 15. a) Explain the architecture of TMS 320C54X processor. *13,K2,C05*

OR

b) Explain Von Neumann, Harvard architecture and modified Harvard ^{13,K2,CO5} architecture in detail.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Find the IDFT of the sequence $X(K) = \{5,0,1-j,0,1,0,1+j,0\}$.

OR

b) Design a digital Butterworth filter satisfying the constraints $0.707 \le |H(e^{jw})| \le 1.0$; for $0 \le w \le 0.3\pi$ $|H(e^{jw})| \le 0.2$; for $0.75\pi \le w \le \pi$

With T=1sec and use impulse invariant transformation.