	Reg. No.			
	Ouestion Paper Code 13281			
	BE / B Toch - DECREE EXAMINATIONS NOV / DEC 2024			
	D.E. / D. LECH DEGREE EXAMINATIONS, NOV / DEC 2024 Fifth Semester			
	Floctronics and Instrumentation Engineering			
	Electronics and instrumentation Engineering			
	(Common to Instrumentation and Control Engineering)			
	20EIPC503 - DIGITAL SIGNAL PROCESSING			
	Regulations - 2020			
Du	ration: 3 Hours Ma	x. Ma	rks:	100
	PART - A (MCQ) $(20 \times 1 = 20$ Marks) Answer ALL Questions	Marks	K – Level	CO
1.	The Nyquist rate is defined as:	1	K1	C01
	(a) The sampling rate at which a signal is under sampled			
	(b) Twice the maximum frequency of the signal			
	(c) The maximum amplitude of a signal			
\mathbf{r}	(d) The average power of a signal Which one is a low characteristic of a causal system?	1	K1	<i>CO</i> 1
۷.	(a) It responds only to past and present inputs (b) It responds to future inputs	1	m	001
	(c) It depends on initial conditions only (d) It generates random outputs			
3.	For a system to be considered stable, which of the following must be true?	1	Kl	C01
0.	(a) It is time-variant			
	(b) It responds to inputs with unbounded outputs			
	(c) It responds to bounded inputs with bounded outputs			
	(d) It depends on future inputs			
4.	A system is said to be linear if it follows the principle of:	1	Kl	<i>C01</i>
	(a) Time variance (b) Additivity and homogeneity			
5	(c) Recursion (d) Time invariance The invariance $Y(z)$ can be computed by	1	K I	co^{2}
э.	The inverse Z-transform of a function $X(Z)$ can be computed by: (a) Taking the Laplace transform and applying the inverse	1	KI	002
	(a) Taking the Laplace transform and apprying the inverse (b) Solving the difference equation directly			
	(c) Using partial fraction expansion and applying the inverse formula			
	(d) Differentiating the original Z-transform equation			
6.	Which of the following statements about the magnitude and phase representation of the DTFT is true?	1	K1	<i>CO</i> 2
	(a) The magnitude spectrum gives the amplitude of each frequency component, and the			
	(b) The magnitude spectrum shows the real part of the signal and the phase spectrum.			
	shows the imaginary part			
	(c) The magnitude spectrum shows the total energy in the signal, and the phase spectrum			
	shows the power			
	(d) The magnitude spectrum is always zero for a periodic signal, while the phase spectrum			
	is constant			
7.	Convolution of two discrete-time signals in the time domain corresponds to:	1	Kl	<i>CO2</i>
	(a) Division of their Z-transforms (b) Multiplication of their Z-transforms (d) Time shifting in the frequency domain			
8	(c) Addition of their Z-transforms (d) Time smitting in the frequency domain	1	<i>K1</i>	CO2
в.	(a) All the poles of its Z-transform lie on the unit circle	-		002
	(b) All the poles of its Z-transform lie inside the unit circle			
	(c) All the zeros of its Z-transform lie inside the unit circle			
	(d) The region of convergence includes the origin			
K1	- Remember: K2 - Understand: K3 - Apply: K4 - Applyze: K5 - Evaluate: K6 - Create		132	81
<u> </u>	$\frac{1}{1}$		194	

9.	Twiddle factors in the FFT algorithm are:	1	<i>K1</i>	СО3
	(a) The real part of the DFT coefficients			
	(b) Complex exponential factors used for combining smaller DFTs			
	(c) Multiplication factors that control the butterfly computations			
	(d) Scaling factors used for normalizing the frequency components			
10.	The magnitude spectrum of a DFT represents:	1	<i>K1</i>	CO3
	(a) The real part of the signal in the time domain			
	(b) The amplitude of different frequency components of the signal			
	(c) The imaginary part of the time domain signal			
	(d) The phase shift of different frequency components			
11.	Which of the following statements about radix-2 FFT is correct?	1	K1	<i>CO3</i>
	(a) It can only be applied when the number of data points is a power of 2			
	(b) It is slower than computing the DFT directly			
	(c) It cannot handle complex-valued signals			
	(d) It requires the input signal to be non-periodic			
12.	The Decimation-in-Time (DIT) algorithm for FFT works by:	1	<i>K1</i>	<i>CO3</i>
	(a) Dividing the time-domain signal into smaller frequency components			
	(b) Splitting the signal into even and odd indexed samples at each stage			
	(c) Decimating the frequency domain representation			
	(d) Reversing the order of time samples before performing FFT			
13.	In FIR filter design, windowing techniques are used to:	1	K1	<i>CO</i> 4
10.	(a) Increase the computational complexity of filter design			
	(b) Truncate the infinite impulse response to a finite length			
	(c) Change the sampling rate of the filter			
	(d) Remove unwanted frequency components from the filter			
14.	Chebyshev filters differ from Butterworth filters because they:	1	<i>K1</i>	<i>CO</i> 4
	(a) Have an equiripple response in the passband or stopband			
	(b) Are inherently unstable			
	(c) Have a maximally flat response			
	(d) Are only applicable for discrete systems			
15	In filter realization, parallel form implementation is beneficial for:	1	K1	<i>CO</i> 4
101	(a) Systems with low computational power (b) Minimizing memory requirements			
	(c) Designing filters with multiple resonant peaks (d) Achieving a linear phase response			
16.	FIR filters are preferred for applications that require:	1	1 K1 CO4	
101	(a) Minimum phase characteristics (b) Non-linear phase characteristics			
	(c) Linear phase characteristics (d) Maximum phase characteristics			
17.	The primary difference between fixed-point and floating-point DSPs is:	1	K1	<i>CO5</i>
17.	(a) The type of data processed (b) The way they handle precision and range of data			
	(c) The speed of computation (d) The power consumption of the DSP			
18.	In DSPs, the addressing mode that allows accessing memory relative to a base register is	1	K1	<i>CO5</i>
10.	called:			
	(a) Immediate addressing (b) Indirect addressing			
	(c) Indexed addressing (d) Direct addressing			
19.	In DSP terminology, MAC stands for:	1	K1	CO5
	(a) Multiply and Cache (b) Multiply and Compare			
	(c) Multiply and Accumulate (d) Multi-Address Communication			
20.	What is the primary purpose of a Digital Signal Processor (DSP)?	1	Kl	C05
	(a) Image compression (b) General-purpose computing			
	(c) High-speed numerical computation on digital signals (d) File management			

PART - B $(10 \times 2 = 20 \text{ Marks})$

	Answer ALL Questions			
21.	State the classification of discrete time signals.	2	K1	COI
22.	Define aliasing effect.	2	K1	C01
23.	Determine the Z-Transform of $x(n) = a^n u(n)$.	2	K2	<i>CO2</i>
24.	State convolution property of Z- Transform.	2	K1	<i>CO2</i>
25.	Find the DFT of the sequence $x(n) = (1 \ 1 \ 0 \ 0)$ using direct computation method.	2	K1	CO3
26.	How many multiplication and additions required computing 8- point DFT using radix-2 FFT?	2	K1	СО3
27.	Write the equation for Hamming window function.	2	K2	<i>CO</i> 4
28.	Describe the significance of pre-warping in filter design.	2	K2	<i>CO</i> 4
29.	Compare a Digital Signal Processor with a general-purpose processor.	2	K2	CO5
30.	Identify the main components of DSP architecture.	2	Kl	CO5

PART - C ($6 \times 10 = 60$ Marks)

		Answer ALL Questions			
31.	a)	Check whether the following systems are linear and time varying:	10	Kl	<i>CO1</i>
		y(n) = n x(n)			
		$y(n) = nx^2(n)$			

 $y(n) = nx^{-}(n)$ $y(n) = x^{2}(n)$ y(n) = Ax(n) + By(n) = x(2n)

OR

b) Check whether the following signals are energy or power signal. 10 K1 CO1

(a)
$$x(n) = \left(\frac{1}{3}\right)^n u(n)$$

(b) $x(n) = \sin\left(\frac{\pi}{4}\right)^n$

32. a

a)	Determine the inverse Z- Transform of $x(z) = \frac{1}{RoC} : z > \frac{1}{RoC}$	0.5	K2	<i>CO2</i>
	(z-025)(z-0.5)			
	OR			

- b) Determine the response of the system and check for stability $10 \quad K2 \quad CO2$ y(n) = 0.7y(n-1) - 0.12y(n-2)+x(n-1) + x(n-2) and x(n) = n.u(n).
- 33. a) Compute 8 point DFT of the sequence $x(n) = \{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \}$ ¹⁰ ^{K3} ^{CO3} using radix-2 DIF-FFT algorithm.

OR

- b) Compute the circular convolution (DFT property) of the following sequences using ¹⁰ K3 CO3 the DFT and IDFT approach $x_1(n) = \{1,0,2,1\}, x_2(n) = \{1,1,1,1\}$.
- 34. a) The specification of the desired Low Pass Digital Filter is $10 \quad K3 \quad CO4$ $0.707 \le |H(\omega)| < 1.0 ; 0 \le \omega \le 0.2\pi$

 $|H(\omega)| \le 0.1$; $0.5\pi \le \omega \le \pi$ Assume T = 1 sec

Design a Chebyshev digital Low Pass Filter for the above spec. using Bilinear transformation Technique (BLT).

OR

13281

b) A low pass Filter is required to be designed with the desired frequency response 10 K3 CO4

$$H_{d}(e^{jw}) = \begin{cases} e^{-j3\omega} & \text{for } -\frac{3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0 & \text{for } -\frac{3\pi}{4} \le \omega \le \pi \end{cases}$$

Obtain the filter coefficients h(n) using Hamming window function for N=7.

35. a) Describe in detail the architectural aspects of TMS320C54 digital signal processor ¹⁰ K2 CO5 using illustrative block diagram.

OR

- b) Describe different addressing formats used in DSP processors. 10 K2 CO5
- 36. a) Design a Digital Filter equivalent to $H(s) = \frac{2}{(s^2 + 3s + 2)}$ using Impulse Invariant ¹⁰ K3 CO4

method (T = 0.2 sec).

OR

b) Explain Von Neumann, Harvard architecture and modified Harvard architecture for ¹⁰ K2 CO4 the computer.