		<u> </u>	-							
	Reg. No.									
Question Paper Code		12895								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024										
Fifth Semester										
Electronics and Instrumentation Engineering										
(Common to Instrumentation and Control Engineering)										
20EIPC503 - DIGITAL SIGNAL PROCESSING										
Regulations - 2020										
Duration: 3 Hours					N	Max. Marks: 100				
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions					Marks $\frac{K}{Level}$ CO					
1. Show that $(\mathbf{n}) = \mathbf{u}(\mathbf{n}) - \mathbf{u}(\mathbf{n} - 1)$ graphically.							2	K2	<i>CO1</i>	
2. What is aliasing effect?						2	K1	<i>CO1</i>		
3. State convolution theorem with respect to Z-Transform.							2	K2	<i>CO2</i>	
4. Find the Fourier tra	nsform of a sequence $x(n)$	$0 = \left\{ \begin{array}{l} 1, \\ 0 \end{array} \right\}$	_	$2 \leq othe$	n≤ ?rw	≦ 2 ise		2	K2	<i>CO2</i>
5. Find the DFT of the								2	K2	CO3
6. Draw the basic butterfly diagram for Radix 2 DIT-FFT.						2	K1	CO3		
7. Distinguish between FIR and IIR filter.						2	K2	<i>CO</i> 4		
8. Define a window.							2	K1	<i>CO</i> 4	
9. How is pipelining effected in a DSP processor?						2	K1	CO5		
10. List some commercial DSP Processors.						2	K1	CO5		

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Check whether following system are linear, time invariant, causal and ¹³ K2 CO1 stable (i) $y(n) = \cos x(n)$

(ii) $y(n) = x(n^2)$ (iii) y(n) = x(n) + nx(n+1)

OR

- b) i) Discuss in detail about different sampling techniques and comment 9 K2 CO1 on the condition if sampling frequency is less than the Nyquist rate.
 - ii) Determine whether the following signals are energy or power or 4 K2 CO1 neither energy nor power signals.

a)
$$x(n) = \left(\frac{1}{3}\right)^n u(n)$$

b) $x(n) = sin\left(\frac{n\pi}{4}\right)$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12. a) i) Evaluate Z-transform of the following signals and plot the ROC ⁸

a)
$$x(n) = a^n \cos \omega_0 n u(n)$$

b) $x(n) = -a^n u(-n-1)$

ii) Determine all possible signals x(n) associated with the following Z- ⁵ K2 CO2 transform function.

$$X(z) = \frac{5z^{-1}}{(1 - 2z^{-1})(1 - 3z^{-1})}$$

OR

b) i) Determine the transfer function and frequency response of the discrete 8 K2 CO2 time linear time invariant system which is governed by the following difference equation.

$$y(n) - 5y(n-1) = x(n) + 4x(n-1)$$

- ii) Determine the magnitude and phase representation for the following 5 K2 CO2 system: $y(n) + \frac{1}{4}y(n-1) = x(n) x(n-1)$
- 13. a) i) Compute 8-point DFT of the given sequence using DIT algorithm. $\begin{aligned}
 y & K2 & CO3 \\
 x(n) &= \begin{cases} n, & n \leq 7 \\ 0, otherwise \\
 ii) & Compute the circular convolution of the following sequences. \\
 x_1(n) &= \delta(n) + \delta(n-1) - \delta(n-2) - \delta(n-3)
 \end{aligned}$

$$x_2(n) = \delta(n) - \delta(n-2) - \delta(n-4)$$
OR

- b) Derive the butterfly structure for a radix-2 DIF algorithm that is used ¹³ K² CO³ to compute FFT. Explain with an example.
- 14. a) Convert the analog filter with transfer function into digital filter by ¹³ K³ CO⁴ impulse invariant transformation.

$$H(s) = \frac{s+0.1}{(s+0.1)^2+9}$$

OR

b) Design a low pass IIR filter with Butterworth design for the following ¹³ K³ CO⁴ specifications using bilinear transformation:

$$\begin{split} 0.8 &\leq \left| H(e^{j\omega}) \right| \leq 1, \quad 0 \leq |\omega| \leq \frac{\pi}{4} \\ \left| H(e^{j\omega}) \right| \leq 0.2, \quad \frac{\pi}{2} \leq |\omega| \leq \pi \end{split}$$

Realize the filter in direct form II structure.

15. a) Illustrate the architecture of any one Commercial Digital Signal ¹³ K² CO5 Processor and explain with necessary diagram.

OR

12895

K2 CO2

- b) i) Explain in detail any four addressing formats of digital signal 8 K2 CO5 processor.
 - ii) Explain the classification of instructions in DSP processor with 5 K2 CO5 suitable examples.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) i) The desired frequency response of a low pass filter is given by 7 K3 CO4

$$\mathbf{H}_{\mathbf{d}}(\boldsymbol{\omega}) = \begin{cases} \mathbf{e}^{-\mathbf{J}\mathbf{3}\boldsymbol{\omega}}, & 0 \le |\boldsymbol{\omega}| \le \mathbf{3}\pi/4\\ \mathbf{0}, & 3\pi/4 \le |\boldsymbol{\omega}| \le \mathbf{\pi} \end{cases}$$

Determine the impulse response of an FIR filter having length of 5 using rectangular window.

ii) Obtain the cascade and parallel form realization for the following 8 K3 CO4 system described by the difference equation

$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) + 3x(n-1) + 2x(n-2).$$

OR

b) Determine the coefficients of a linear phase FIR filter of length N=15 15 K3 CO4 which has a symmetric unit sample response and a frequency response that satisfies the following condition.

$$H_{r}\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & \text{for } k = 0, 1, 2, 3\\ 0 & \text{for } k = 4, 5, 6, 7 \end{cases}$$