	Reg. N	0.									
Question Paper Cod	le	1	309	99							

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Seventh Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20EIPC701 - ROBOTICS AND AUTOMATION

Regulations - 2020

Duration: 3 Hours

PART - A (MCQ) (20 × 1 = 20 Marks)				co
	Answer ALL Questions	<i>w</i> 101K5	Level	ιυ
1.	The main objective of industrial robot is to	1	K1	<i>CO1</i>
	(a) Minimize the labour requirement (b) Increase productivity			
	(c) Enhance the life of production machines (d) All the above			
2.	How many degrees of freedom does a human shoulder have?	1	K1	<i>CO1</i>
	(a) 1 (b) 2 (c) 3 (d) 4			
3.	Generally, which type of robots have higher accuracy?	1	K1	<i>CO1</i>
	(a) Non-rigid (b) Rigid (c) Smaller (d) Larger			
4.	Recall of the following laws is Asimov's first and most important law of robotics	1	K1	<i>CO1</i>
	(a) Robot actions must never result in damage to the robot			
	(b) Robot must never take action harmful to human			
	(c) Robot must follow the direction given by human			
	(d) Robot must make business a greater profit			
5.	Drives are also known as	1	K1	<i>CO2</i>
	(a) Actuators (b) Controller (c) Sensor (d) manipulator			
6.	The number of moveable joints in the base, the arm, and the end effectors of the robot	1	K1	<i>CO2</i>
	determines			
	(a) degrees of freedom (b) payload capacity			
	(c) operational limits (d) flexibility			
7.	Identify from the following short range sensor	1	K1	<i>CO2</i>
	(a) ultrasonic sensor (b) GPS (c) Radar (d) Camera systems			
8.	Drive is used for lighter class of robot.	1	K1	<i>CO2</i>
	(a) Hydraulic (b) Pneumatic (c) Electric (d)All the above			
9.	Internal state sensors of the end effectors measures the following.	1	K1	СО3
	(a) Position (b) Position and Velocity			
	(c) Velocity and Acceleration (d) Position, velocity and Acceleration			
10	The nurness of control input provides to report joint actuators. In order to accomplish a	1	K1	CO3
10.	task with	-		
	(a) robot control system (b) end effectors (c) motor control (d) mechanical system			
11	The movement of manipulator's joints and links represent twically	1	K1	CO3
11.	(a) Cartesian coordinates (b) Joint coordinates (Denavit Hartenberg parameters)	-		
	(a) Cartesian coordinates (b) Joint coordinates (Denavit-fratenderg parameters)			
12	A manipulator is also known as a	1	K1	CO3
12.	(a) Track drive (b) Robot arm (c) Illtrasonic Sensor (d) Camera	-		
	(a) mack arrive (b) Robot and (c) Ontasonic Sensor (d) Califera			

1

Max. Marks: 100

13.	 In robotics, Inverse kinematics is used for (a) Finding orientation of tool with respective base (b) Mapping from the tool configuration space R6 back to joint space Rn (c) Finding tool configuration space Rn 					
	(d) Mapping from joint space Rn to the tool configuration space R6					
14.	The number of movable joints in the base, arm and end effector determines:	1	K1	<i>CO</i> 4		
15.	What is meant by forward dynamics?	1	K1	CO4		
	(a) Calculation of torques equation					
	(b) Calculation of motion equation if joint torques or end-effector forces are given					
	(c) Calculation of motion equation					
16	(d) Calculation of joint forques or end-effector forces if motion variables are given Industrial robot is generally designed to carry out which coordinate system:	1	K1	CO4		
10.	(a) Polar (b) Cartesian (c) Cylindrical (d) Spherical					
17.	Which models gives relation between the position and orientation of the end-effector a	and ¹	K1	<i>CO5</i>		
	spatial positions of joint-links?					
	(a) Kinematic model (b) Differential model (c) Integral model (d) Static mod	el		~~-		
18.	If the orientation changes without the change of position then the transformation is	Ι	KI	<i>CO5</i>		
10	(a) Pure translation (b) Pure rotation (c) Combined transformation (d) None Following is the robotic like device	1	K1	CO5		
17.	(a) Telecherics (b) Exo-skeleton (c) Locomotive device (d) All the above	;				
20.	Number of linear coordinate in a cylindrical coordinate robot.	1	K1	<i>CO5</i>		
	(a) 2 (b) 3 (c)1 (d) 0					
	$PART - B (10 \times 2 = 20 \text{ Marks})$					
21	Classify the motion control of Robot arm	2	K2	COI		
22.	What is meant by Workspace?	2	K1	COI		
23.	Recall about Gripper.	2	K1	<i>CO2</i>		
24.	Point out the uses of sensors in robotics.	2	K1	<i>CO2</i>		
25.	25. Mention the limitations of magnetic grippers.					
26.	26. Name the electrical drives used in manipulators?					
27.	27. Write about transformation in robotics.					
28.	28. Mention the steps to derive kinematic model.					
29.	29. What is Palletizing?					
30	0 State about robot arm dynamics					
50.						
	PART - C (6 × 10 = 60 Marks) Answer ALL Questions					
31.	a) Explain the main Robot anatomy with neat sketch.	10	K2	COI		
	OR					
	b) Discuss in detail about any two robot configurations classified according to coordinate system.	the 10	K2	<i>CO1</i>		
32.	a) What are the different types of sensors? Classify them. Sketch and explain ab proximity sensor.	oout 10	K2	<i>CO2</i>		
	OR			~~.		
	b) Describe the various types of drive system for robots and its limitations.	10	K2	<i>CO2</i>		
33.	a) Discuss the functions of gripper with the help of a sketch. Explain the working magnet grippers used for robots.	g of 10	K2	СО3		
<i>K1</i> -	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		1309)9		

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

- OR
- b) Discuss the functions of manipulators. Sketch and explain a pneumatic manipulator ¹⁰ ^{K2} ^{CO3} control circuits used for robots.
- 34. a) Rotate the vector v = 5i + 3j + 8k by an angle of 90° about thex-axis. The rotation ¹⁰ K³ CO4 transformation is given by

OR

- $H = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 90 & -\sin 90 & 0 \\ 0 & \sin 90 & \cos 90 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$
- b) Frame {2} is rotated with respect to frame {1} about x-axis by an angle of 60°. The ¹⁰ K3 CO4 position of the origin of frame {2} as seen from frame {1} is ${}^{1}D_{2} = [7 \ 5 \ 7]^{T}$ The transformation matrix ${}^{1}T_{2}$ is

 $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0.5 & -0.866 \\ 0 & 0.866 & 0.5 \end{vmatrix}$ using this matrix, determine the description of frame $\{1\}$ relative to frame $\{2\}$.

35.	a)	Discuss in detail about the workplace design consideration for safety of Robots.	10	K2	<i>CO5</i>				
		OR							
	b)	Enumerate the non-manufacturing areas where robots are expected to be used.	10	K2	CO5				
36.	a) i)	Briefly, explain about robot-programming language.	5	K2	<i>CO4</i>				
	ii)	Explain in detail about RGV types of robots.	5	K2	<i>CO5</i>				
	OR								
	b) i)	With an example describe about inverse kinematics of Robot.	5	K2	<i>CO</i> 4				
	ii)	Write short notes on Robot cell layouts with neat diagram.	5	K2	CO5				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create