					-						
		Reg. No.									
	Question Paper Code	12582	2								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
Seventh Semester											
Electronics and Instrumentation Engineering											
20EIPC701 - ROBOTICS AND AUTOMATION											
Regulations - 2020											
Duration: 3 Hours Max.							x. Ma	. Marks: 100			
PART - A (10 × 2 = 20 Marks) Answer ALL Questions					Mark	K– Level	со				
1.	. Describe the three laws of robotics.							2	K2	CO1	
2.	What is Degree of Freedom? Identify the importance of it.							2	K1	CO1	
3.	Mention the various application of robot manipulator in an industry.							2	K2	<i>CO2</i>	
4.	Distinguish between Hydraulic and pneumatic drives.							2	K2	<i>CO2</i>	
5.	Compare and contrast the end-effectors from functions.	the viewpoin	nt o	f the	ir			2	K2	CO3	
6.	Identify the limitations of magnetic grippers.							2	K2	СО3	
7.	What are the methods to obtain the jacobian frotator joints?	for a six –lin	k m	anip	ula	tor	with	2	K1	<i>CO</i> 4	
8.	Discuss any four differences between serial a	and parallel manipulators.					2	K2	<i>CO</i> 4		
9.	Write the importance of Machine interface in robotics.							2	K1	CO5	
10.	What are the uses of PID controllers in Robot	tics?						2	K1	CO5	
	PART - B (5 × 13 =	= 65 Marks)									

Answer ALL Questions

11. a) Classify the robots based on its functionality. Also mention the 13 K2 CO1 specifications of the same.

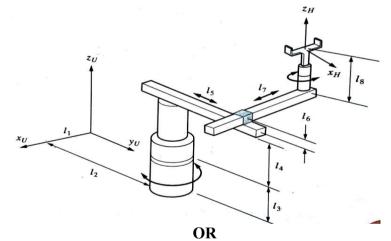
OR

- b) With the help of a neat sketch, explain the basic components of a robot ¹³ K2 CO1 connected as a system.
- 12. a) Classify the types of sensors used for robotic operation in man ¹³ K² CO² machine interface with neat illustration. Describe about their features and their area of application.

OR

b) Describe in detail about the Machine vision systems in robotics. 13 K2 CO2

12582


13. a) With neat sketch describe the vacuum grippers in terms of their ¹³ K² CO³ principles and uses.

OR

- b) Describe in detail the construction of manipulators with its dynamics 13 K2 CO3 and force control.
- 14. a) A point P in space is defined as $P = (2, 3, 5)^T$ relative to frame B ¹³ K³ CO⁴ which is attached to the origin of the reference frame A and is parallel to it. Apply the following transformations to frame B: (a) Rotate 90° about x-axis, then, (b) Rotate 90° about local a-axis, then, (c) Translate 3 units about y-axis, 6 units about z-axis, and 5 units about x-axis. Find the P matrix after transformations. Plot the points in the 3-D grid of Cartesian space.

OR

- b) Discuss about the advantages and disadvantages of lead through ¹³ K² CO⁴ programming in detail.
- 15. a) For the given 4 DOF robot as shown below, assign the coordinates ¹³ K4 CO5 frames based on D-H representation. Fill out the parameters table containing θ , d, a, and α . Write an equation in terms of A matrices that show how UTH can be calculated.

b) Describe in detail the robot cell design.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Express the concepts of forward kinematics and inverse kinematics in ¹⁵ K³ CO⁴ the context of manipulators. Disclose their applications with two, three, and four degrees of freedom in robotics.

2

OR

b) Identify the basic characteristics needed for Sensors. List the various ¹⁵ K3 CO2 sensors used in the field of robot and explain any one in detail.

13 K2 CO5