	Reg. No.			
	Question Paper Code 13070			
	B.E. / B.Tech DECREE EXAMINATIONS NOV / DEC 2024			
	D.E. / D. Iteli DEOREE EXAMINATIONS, NOV / DEC 2024 Fourth Semester			
	Flootronics and Instrumentation Engineering			
	20ELDW 401 DICITAL ELECTRONICS WITH LABORATORY			
	20EIPW40I - DIGITAL ELECTRONICS WITH LABORATORY			
D	Regulations - 2020	14	1 1	0.0
D	uration: 3 Hours Ma	Max. Marks: 100		
	$PART - A (MCQ) (20 \times 1 = 20 Marks)$	Marks	K –	со
1	Answer ALL Questions	1	K1	COL
1.	what is the decimal equivalent of binary $1011?$	1	K1	COI
2	(a) 9 $(b) 10$ $(c) 11$ $(d) 12In a 7-bit Hamming code, how many parity bits are there?$	1	К2	CO1
2.	(a) 1 (b) 2 (c) 3 (d) 4	-		
3	The Boolean expression for $A + A'B$ simplifies to:	1	K2	CO1
5.	(a) $A + B$ (b) $A' + B$ (c) $A'B$ (d) AB			
4.	In a 3-variable K-map, how many cells are there?	1	Kl	COI
	(a) 2 (b) 4 (c) 8 (d) 16			
5.	In digital electronics, which logic gate produces a 1 output only if all inputs are 1?	1	K1	<i>CO2</i>
	(a) OR (b) AND (c) XOR (d) NOT			
6.	In a binary to Gray code converter, what happens to the most significant bit?	1	K2	<i>CO2</i>
	(a) It remains unchanged (b) It is complemented			
7	(c) It is shifted left (d) It is shifted right	1	VI	cor
/.	(a) Converte single input to multiple output	1	K1	002
	(a) Converts single input to multiple outputs (b) Multiple inputs to one output (c) Parallel to serial data conversion (d) Stores digital data			
8	Which of the following is a combinational logic circuit?	1	K1	CO2
0.	(a) Flip-flop (b) Counter (c) Adder (d) Register			
9.	A 4-bit ring counter requires how many flip-flops?	1	K2	CO3
	(a) 3 (b) 4 (c) 5 (d) 6			
10.	Which type of shift register can perform serial and parallel operations?	1	K1	СОЗ
	(a) Universal shift register (b) Ring counter			
	(c) Johnson counter (d) Decade counter	,		<i>c</i>
11.	In a JK flip-flop, what is the output when $J=1$ and $K=1$?	Ι	K2	<i>CO3</i>
10	(a) No change (b) Set (c) Reset (d) loggle	1	K)	CO3
12.	(a) 15 (b) 16 (c) 10 (d) 8	1	<u>K2</u>	COS
13	Which of the following is a type of asynchronous hazard?	1	K1	CO4
15.	(a) Logical hazard (b) Static hazard (c) Dynamic hazard (d) All of the above	e		
14.	A race condition in an asynchronous circuit	1	K2	<i>CO</i> 4
	(a) A condition where the circuit races through multiple outputs			
	(b) A situation where the output depends on the sequence of changing inputs			
	(c) A stable state of the circuit			
	(d) An error-free condition in asynchronous circuits	-		<i></i>
15.	Which PLD is the simplest and is only programmable in its AND array?	1	K1	<i>CO</i> 4
	(a) PLA (b) PROM (c) PAL (d) CPLD			

16.	The main difference between CPLD and FPGA is (a) FPGAs are used for simple circuits, while CPLDs are for complex circuits (b) CPLDs have a higher density of logic resources than FPGAs (c) FPGAs are more flexible and reconfigurable than CPLDs (d) CPLDs are faster than FPGAs for all applications				<i>CO4</i>
17.	(a) I	ch of the following is a primary data type in VHDL?Bit(b) Float(c) Integer(d) String	1	K1	CO5
18.	Wha 0000	at would be the output of a 4-bit synchronous counter after 10 clock pulses if it starts at 0?	1	K2	CO5
19.	(a) (The libra use entition port	<pre>0101 (b) 1010 (c) 1100 (d) 1011 code given belongs to which of the following flip flop? ary IEEE; IEEE.std_logic_1164.all; ty ff is (D,Clk : IN std_logic; Q: OUT std_logic); ff:</pre>	1	K2	CO5
20.	(a) S Whi (a) I	SR flip flop (b) JK flip flop (c) D flip flop (d) None of the mentioned ich construct is used to describe a combinational circuit in VHDL? Process (b) Architecture (c) Entity (d) Signal	1	K1	CO5
		PART - B (10 × 2 = 20 Marks)			
		Answer ALL Questions			
21.	Stat	e De-Morgan's law.	2	Kl	COI
22.	Illus	strate the steps to implement OR gate using NAND gate.	2	K2	<i>CO1</i>
23.	List	two examples of combinational logic circuits.	2	K1	CO2
24.	Exp	lain the main function of a half-adder.	2	K2	<i>CO2</i>
25.	Rep	roduce T flip flop using JK flip flop.	2	K1	CO3
26.	Enu	merate the characteristics of different types of flip-flops.	2	K2	CO3
27.	Illus	strate the various steps involved for designing asynchronous sequential circuits.	2	K2	<i>CO</i> 4
28.	Out	line the causes of essential Hazard.	2	K1	<i>CO</i> 4
29	Define Behavioral model			<i>K1</i>	CO5
30	Diff	Perentiate a signal and a variable	2	K2	CO5
50.	DIII		-	112	000
		PART - C (6 × 10 = 60 Marks) Answer ALL Questions			
31.	a)	Explain the K-map method for simplifying Boolean expressions. Illustrate with a 4-variable Boolean function.	10	K2	<i>CO1</i>
		OR			
	b)	Explain with a out the advantages over other logic families. Neat diagram the operation of 2 input CMOS NAND gate and list.	10	K2	<i>CO1</i>
32.	a)	Design a full adder using 2 half adders.	10	K3	CO2
		OR			
	b)	Design a Gray to Binary code converter and implement the same using logic gates.	10	K3	<i>CO2</i>
33.	a)	Design and implement MOD-5 up counter using T Flip-flop.	10	K3	СО3
	L)	UN Evaluin the size of a SD flinflon and evaluin its ensuration. Cive the truth table	10	K?	CO^{3}
	D)	characteristic table and excitation table.	10	Π2	005

34.	a)	Design an Asynchronous sequential circuit that has two inputs X1 and X2 and one output Z. When $X1=0$, the output Z is 0. The first change in X2 that occurs while X1 is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to 0. OR	10	К3	CO4			
	b)	Explain in detail about critical races and non-critical races in asynchronous sequential circuits with examples.	10	К2	<i>CO4</i>			
35.	a)	Design a logic circuit and write a VHDL program to add 3 bit numbers.	10	K3	CO5			
		OR						
	b)	Construct the behavioral and structural model of a 1 to 4 demux.	10	K3	CO5			
36.	a) i)	Describe the steps involved in the design of an asynchronous sequential circuit.	5	K2	<i>CO</i> 4			
	ii)	Write the behavioral model of a Full Subtractor.	5	K2	CO5			
OR								
	b) i)	Explain the concept and working of PROM.	5	K2	<i>CO</i> 4			
	ii)	Write a VHDL behavior descriptions of D flip flop.	5	K2	<i>CO</i> 5			