	Re	g. No.									
	Question Paper Code	124	21								
	B.E. / B.Tech DEGREE EXAM Third Sen	INATION nester	NS, NO	OV	/ D	EC	2023	3			
	Computer Science and	Engineeri	ing (Io	oT)							
20E	SCI301 - BASIC ELECTRONICS AND	COMMU	NICA	TI	ON	EN	GIN	IEF	RIN	١G	
	(Regulations	2020)									
Duration: 3 Hours Max. M				Mar	rks: 100						
	PART - A (10 × 2 Answer ALL (= 20 Mar Duestions	·ks)								
1.	State Norton's theorem.	~							M K-L a 2,K	l arks, evel, C((1,CO1	9
2.	Define dependent source of a circuit.								2,K	1,CO1	
3.	Differentiate diffusion current and drift cu	rrent.							2,K		
4.	Draw the equivalent diagram of an OP-AM	ΛP.							2,K	<i>.</i> 1, <i>CO</i> 2	
5.	For a discrete Memoryless channel define theorem.	channel c	capacit	ty a	s p	er Sł	nann	on	2,K	C1,CO3	
6.	Give the equation for finding the entropy of	of the bina	ry sou	irce	•				2,K	C1,CO3	
7.	Define quantization.								2,K	C1,CO5	
8.	What should be the minimum bandwid channel?	th require	ed to	trai	nsn	nit a	PC	CM	2,K	C1,CO5	
9.	Define Baud.								2,K	C1,CO6	
10.	What is the concept of frequency reuse?								2,K		

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) In the circuit shown in Fig., find the current supplied by the voltage ^{13,K2,CO1} source and the voltage across the current source by mesh analysis.

b) In the circuit of Fig., find the value of R for maximum power transfer. ^{13,K2,CO1} Also, calculate the maximum power.

12. a) Derive the gain of inverting and non-inverting amplifier using op-amp. *13,K2,CO2*

OR

- b) Explain the configurations and the principle of operation of BJT. *13,K2,CO2*
- 13. a) Explain the significance of the entropy H(X|Y) of a communication ^{13,K2,CO3} system where X is the transmitter and Y is the receiver.

OR

- b) Explain mutual information and explain the properties of mutual 13,K2,CO3 information.
- 14. a) Explain Quantization process in detail and derive the expression for ^{13,K2,CO5} output signal to noise ratio of uniform quantizer.

OR

- b) What is Sampling? Give its types along with the necessary waveforms ^{13,K2,CO5} and also explain aliasing effect in sampling.
- 15. a) With neat waveforms, phasor diagram and constellation diagram, ^{13,K2,CO6} explain in detail about PSK and 8-PSK with its applications.

OR

b) With neat diagram, explain in detail about multiple access techniques. 13,K2,CO6

PART - C (1 × 15 = 15 Marks)

16. a) Explain Armstrong method of FM generation in Detail. 15,K2,CO4

OR

b) An angle modulated wave is described by the equation V(t) = 10 Cos 15, K2, CO4(2*1000000 IIt+ 10 Cos 2000 IIt). Find (i) the power of the modulated signal. (ii) maximum Frequency deviation (iii) Bandwidth.