Question Paper Code

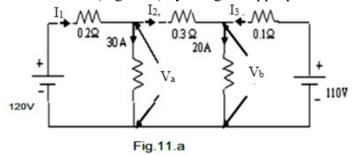
12891

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Third Semester

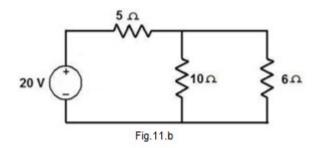
Computer Science and Engineering (IoT)

20ESCI301 - BASIC ELECTRONICS AND COMMUNICATION ENGINEERING


Regulations - 2020

Duration: 3 Hours Max. Marks: 100 $PART - A (10 \times 2 = 20 Marks)$ Marks K- CO **Answer ALL Questions** 1. State Kirchoff's Voltage law. 2 K1 CO1 K1 CO1 2. State Theyinen's theorem. 2 K2 CO2 3. Distinguish Avalanche breakdown and Zener breakdown. 4. Explain the ideal characteristics of op-amp. K2 CO2 K1 CO3 5. Define source coding. State the significance of source coding. 2 K2 CO3 6. Identify the properties of entropy. 7. Compare AM and FM. 2 K2 CO4 K1 CO4 8. List the advantages of PPM. 2 K1 CO5 9. Define Nyquist rate. K2 CO5 10. Explain the Sampling theorem.

$PART - B (5 \times 13 = 65 Marks)$


Answer ALL Questions

11. a) Determine the currents I_1 , I_2 , I_3 , and the voltages V_a and V_b of the ¹³ ^{K2} ^{CO1} network shown below (Fig.11.a.) by using the appropriate method.

OR

b) Using Norton's theorem, determine current through 6-ohm resistance 13 K2 CO1 shown in Figure 11. b.

12.	a)	Explain the characteristics of a PN diode with necessary waveforms and equations.	13	K2	CO2
OR					
	b)	Explain the internal block diagram of the operational amplifier with a neat sketch.	13	K2	CO2
13.	a)	Summarize: (i). Mutual information and its properties. (ii). Channel capacity and its equation. OR	13	K2	CO3
	b)	Illustrate the following with equations (i). Average Information (ii). Properties of Entropy (iii). Calculate entropy when P _k = 0 and when P _k =1.	13	K2	CO3
14.	a)	Illustrate the concept of amplitude modulation with necessary equations.	13	K2	CO4
	1.		12	W2	001
	b)	Explain Armstrong method of FM generation in Detail.	13	K2	CO4
15.	a)	Explain the transmitter and receiver block diagram of PCM. OR	13	K2	CO5
	b) i)	What is Sampling? Give its types along with the necessary waveforms.	10	K2	CO5
	ii)	Define Aliasing.	3	K2	CO5
16.	a)	PART - C (1 \times 15 = 15 Marks) With neat diagram, explain in detail about multiple access techniques. OR	15	K2	CO6

b)

diagram.

Discuss the working of Cellular wireless networks with a neat block 15 K2 CO6