Reg. No.

Question Paper Code 13086

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Third Semester

Computer Science and Engineering

(Common to Information Technology)

20ESEC301 - COMMUNICATION ENGINEERING

Regulations - 2020

	11080110110110 2020			
Dι	aration: 3 Hours Max	. Maı	rks: 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$	Manda	<i>K</i> –	co
	Answer ALL Questions	Marks	Level	CO
1.	Which of the following modulation techniques is most power efficient?	1	K1	CO1
	(a) DSB-SC (b) AM (c) SSB-SC (d) VSB			
2.	Which of the following method is used for detecting SSB wave?	1	K1	CO1
	(a) coherent detection (b) enevlope detection			
	(c) square-law detection (d) phase shift method			
3.	Any error in the local oscillator signal w.r.t the carrier wave results in the distortion of	1	K1	CO1
	(a) modulated signal (b) carrier signal			
	(c) demodulated signal (d) none of the mentioned	,	77.1	G02
4.	On which of the following factors the pull-in time is dependent.	1	KI	CO2
	(a) Initial phase of the signal			
	(b) Loop gain			
	(c) Filter characteristics			
	(d) Frequency difference between the incoming signal and VCO			
_	(e) All of the mentioned	,	77.1	G02
5.	Which of the following are the modes of PLL.	1	K1	CO2
_	(a) Free running (b) Capture (c) Locking of input signal (d) All of the mentioned	,	1/1	GO2
6.	In FM, the modulation index is the ratio of:	1	K1	CO2
	(a) Carrier frequency to modulating frequency			
	(b) Frequency deviation to modulating frequency			
	(c) Carrier amplitude to modulating amplitude			
_	(d) Modulating frequency to carrier amplitude	,	V 1	cor
7.	In Pulse Time Modulation (PTM), information can be conveyed through variations in:	1	K1	CO3
	(a) Amplitude (b) Pulse width or pulse position			
0	(c) Pulse height (d) Carrier frequency	1	V1	СОЗ
8.	Aliasing occurs when:	1	ΚI	COS
	(a) The signal is sampled at twice its maximum frequency			
	(b) The signal is sampled at a rate lower than the Nyquist rate			
	(c) The signal is quantized with too many levels.			
0	(d) The signal is amplified before sampling	1	<i>K1</i>	CO3
9.	Which of the following relation between sampling rate fs and maximum frequency of	1	ΚI	COS
	signal fm is related to the Nyquist sampling theorem.			
10	(a) $fs \ge 2fm$ (b) $fs < 2fm$ (c) $fs \ge fm$ (d) $fs < f_m$	1	<i>K1</i>	CO4
10.	The eye pattern resembles like a closed eye if.	1	ΛI	C <i>U</i> 4
	(a) ISI is present (b) channel noise present (c) sistem ISI or poise is present (d) poiston ISI or poise is present			
	(c) either ISI or noise is present (d) neither ISI or noise is present			

11. Amplitude equalizers are used when	1	K1	CO4			
(a) different frequencies reach the receiver at different times						
(b) transmission rate and ringing frequencies are not matched						
(c) peak of pulses are reduced						
(d) channel bandwidth is more than the transmission rate 12. Which of the following cause intersymbol interference (ISI)	1	K1	CO4			
12. Which of the following cause inter symbol interference (ISI) (a) phase distortion (b) timing inaccuracies	1	11.1	CO4			
(c) amplitude distortion (d) all the mentioned						
13. Syndrome is calculated by	1	K1	CO5			
(a) HT/r (b) rHT (c) rH (d) None of the mentioned						
14. Entropy is the measure of	1	K1	CO5			
(a) Amount of information at the output						
(b) Amount of information that can be transmitted						
(c) Number of error bits from total number of bits						
(d) None of the mentioned	1	K1	CO5			
15. A shannon-fano algorithm average information per bit. (a) Increases (b)Decreases (c) Has no effect (d) None of the mention		ΚI	COS			
(a) Increases (b) Decreases (c) Has no effect (d) None of the mention 16. A linear code is) 1	K1	CO5			
(a) Sum of code words is also a code word	•		000			
(b) All-zero code word is a code word						
(c) Minimum hamming distance between two code words is equal to weight of a	ny non					
zero code word	•					
(d) All of the mentioned						
17. The near-far problem is particularly difficult in sy	ystems, 1	K1	CO6			
where transmitters share transmission frequencies and transmission time.						
(a) space division multiple access (b) Frequency division multiple access						
(c) time division multiple access (d) code division multiple access	1	К2	CO6			
18. In a fixed channel assignment strategy,(a) Each cell is assigned a predetermined set of frequencies	1	K2	000			
(b) The call is served by unused channels of the cell						
(c) The call gets blocked if all the channels of the cell are occupied						
(d) All of the Mentioned						
19. CDMA and TDMA differ by .	1	K1	<i>CO6</i>			
(a) bandwidth (b) link (c) carrier (d) timesharing						
20. FHSS is categorized into	1	K1	CO6			
(a) slow-hop (b) fast-hop						
(c) Both slow-hop and fast-hop (d) None of the Mentioned						
PART - B $(10 \times 2 = 20 \text{ Marks})$						
Answer ALL Questions						
21. Define amplitude modulation (AM).	2	K1	CO1			
22. What is modulation index in AM?	2	K1	CO1			
23. How does a Phase Modulation (PM) demodulator recover the message signal?	2	K2	CO2			
24. What is the role of an FM demodulator, and name one common type used?	2	<i>K1</i>	CO2			
	2	<i>K1</i>	CO3			
25. What is called multiplexing? Give its types.						
26. What is the Nyquist rate, and why is it important in the sampling theorem?	2	K1	CO3			
27. Examine the bandwidth and baud for FSK signal with a Mark frequency of 49 k	Hz and 2	K2	CO4			
Space frequency of 51 kHz and a bit rate of 2kbps.	2	<i>K1</i>	CO4			
28. Draw the phasor diagram of QPSK.	2	K1	CO4			
29. Mention the properties of information.						
30. State Kepler's third law.	2	K1	CO6			

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31.	a) i)	With suitable block diagram and equation, Explain the generation of AM using balanced modulator.	5	K2	CO1
	ii)	Explain the principle of square law modulator with circuit diagram. OR	5	K2	CO1
	b)	Explain the working of super heterodyne receiver with neat block diagram.	10	K2	CO1
32.	a)	Explain the process of FM demodulation using frequency Discriminator. OR	10	K2	CO2
	b)	Draw the circuit of reactance tube modulator and explain its Principle of operation. Derive an expression for the equivalent Capacitance in terms of the g_m of the device and circuit Components.	10	K2	CO2
33.	a)	Define Frequency Division Multiplexing (FDM). Explain how FDM is used in communication systems, its advantages and disadvantages, and the challenges of implementing FDM in high-bandwidth systems. OR	10	K2	CO3
	b) i)	Explain the generation of Delta Modulation with its waveform.	5	K2	CO3
	ii)	What are the drawbacks of DM? Describe about ADM with its advantages and disadvantages.	5	K2	CO3
34.	a)	Describe how eye pattern illustrates the performance of data transmission system with respect to Inter Symbol Interference with neat sketch. OR	10	K2	CO4
	b)	Write a note on QPSK Modulator & demodulator. Draw its phasor and constellation diagram .Explain bandwidth consideration of QPSK.	10	K2	CO4
35.	a)	The source of information A generates the symbols {A0, A1, A2, and A3 & A4} with the corresponding probabilities {0.4, 0.3, 0.15, 0.1 and 0.05}. Encoding the source symbols using binary encoder and Shannon - Fano encoder and compare its efficiency.	10	K2	CO5
		OR			
	b)	Explain how viterbi decoding procedure is used for decoding convolutional codes.	10	K2	CO5
36.	a)	Summarize the direct sequence spread spectrum techniques with neat block diagram.	10	K2	CO6
OR					
	b)	Explain the Bluetooth technology with neat diagram.	10	K2	CO6