		Reg.	No.										
	Ouestion Paper Co	de	1.	302	24								
		A MINIA	TION	[C]	NOV	/ Г	FC	20	24				
	D.E / D.Tech DEGREE EAA	AMINA d Seme	niun	. ,	NUV	/ L	JEC	20	124				
		nginoo	ing										
	CIVILE 2015555202 BASICS OF FLECTDICA	ngineei At Ani	nere	СТ	יחסי	ЛС	'S FI		INI	FD	INC		
	20ESEE202 - DASICS OF ELECTRICA	ions 2	020	C1	NUI	uiC	. 5 Е1	I.I.C	J11 \1		ШЮ		
Dur	Regulat	10115 - 2	.020							Ма	v Ma	rlza.	100
Dui		(20×1)	- 20 N	lar	lea)					Ivia	A. 1910	165.	100
	PARI - A (MCQ) Answer AL	(20 × 1 L Oues	= 20 IV	lar	KS)						Mark	s K- Leve	l co
1.	If a resistor has 5.5V across it and 3mA flowing	through	h it, cal	lcul	ate tl	ne p	owe	r.			1	K1	COI
	(a) 16.5mW (b) 15mW	(c)) 1.83n	ηW		-	(d)	16.5	W			
2.	The nodal method of circuit analysis is based on										1	K1	<i>CO1</i>
	(a) KVL and Ohm's law (b) KC (a) KCL and KVL (d) KCL	L and ()hm's l	law hm	, 'a lar	x 7							
3	As per Maximum Power Transfer Theorem	when	will	nin a 1	oad	v res	istan	ice	abs	trac	t 1	K1	C01
5.	maximum power from a power source?	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ouu	100	1000011		uot				
	(a) Load resistance is less than the internal resist	stance o	f the so	ourc	ce.								
	(b) Load resistance is more than the internal res	istance	of the s	sou	rce.								
	(c) Load resistance has an infinite high resistance	ce.											
Δ	(d) Load resistance is equal to the internal resist The instantaneous current in a circuit is given by	ance of $v_i = 4$	$\cos\left(\omega\right)$	urc t +	е. А) А	Th	e RN	MS	valı	1e o	f 1	K1	CO2
т.	the current is	угт		L '	0) A.	1 11		VIL			1		
	(a) $3\sqrt{3}$ A (b) zero	(c) 4 ⁻	√2 A		(0	1) 2	√2 A						
5.	In delta connection, the relation between phase	e volta	ge (Vp) a	nd li	ne	volta	age	e (V]	L) i	s 1	K1	CO2
		\ \ \ 7				(1)	x 7	τ		,			
6	(a) $vp = vL$ (b) $vp = v3 vL$ (c) The phasor combination of resistive power and t) vp = eactive	VL/VZ	ic	calle	(a) 1	vp=	= v	L/N.	>	1	K1	CO2
0.	(a) True power (b) Apparent power (c)	Reactiv	e nowe	r	canco (c	ı İ) A	vera	ige	now	/er	-		001
7.	The armature of DC motor is laminated to		- pone	-	(-	-)		-0-	P	•••	1	<i>K1</i>	CO3
	(a) To reduce mass $(b) T_{c}$	o reduc	e hyste	resi	is los	s							
0	(c) To reduce eddy current loss (d) To	reduce	e induct	tan	ce						1	1/1	601
8.	The efficiency of a distribution transformer is m (a) Correlation (b) Correct loss (c) St	ainly de	epends	on		laat	mia L				Ι	KI	03
9	(a) Core loss (b) Copper loss (c) Si A single phase induction motor can rotate at a sr	ray los	s uch is	(a) die	lect		088			1	K1	CO3
۶.	(a) equal to the synchronous speed (b) slight	ly great	er than	the	e syn	chro	– onou	IS S	peec	1			
	(c) twice of the synchronous speed (d) slight	ly less t	than the	e sy	vnchr	ono	us sj	pee	ed				
10.	For silicon diode, the value of the forward bias v	oltage	typical	ly							1	K1	<i>CO4</i>
	(a) Greater than 0.3V												
	(b) Greater than $0.7V$												
	(d) depends on the concentration of majority car	riers											
11.	Conventional flow of current in a P-N-P transist	or is fro	om								1	K1	CO4
	(a) Emitter to Base (b) Base to Emitter (c) Ba	se to Co	ollector	: (d) Er	nitte	er to	Co	ollec	tor			
12.	A Field effect transistor operates on		-								1	K1	<i>CO4</i>
	(a) Majority carriers only (b) M	Ainority	/ carrie	rs o	only								

(c) Positively charged ions only (d) Negatively charged ions only

13.	The breaking torque provided by a permanent magnet in a single phase energy meter can	1	K1	CO5			
	be changed by						
	(a) Providing a magnetic shuft and changing its position						
	(b) Changing the distance of the permanent magnet from the centre of the revolving disc						
	(c) Dotti a and D (d) None of the choice						
	(d) None of the above.	1	1/1	005			
14.	The type of damping use for moving iron instruments is	1	KI	cos			
	(a) Air friction damping (b) Fluid friction damping						
	(c) Eddy current damping (d) Gravity friction damping			~~-			
15.	Two wattmeter methods is appropriate for measurement of three phasepower and is	Ι	KI	<i>CO</i> 5			
	applicable for loads of both balanced and unbalanced.						
	(a) star as well as delta (b) only star (c) only delta (d) None of the above						
16.	The wattmeter reading while measuring the reactive power with wattmeter is	1	Kl	<i>CO5</i>			
	(a) $V_L I_L \sec \emptyset$ (b) $V_L I_L \sin \emptyset$ (c) $V_L I_L \tan \emptyset$ (d) $V_L I_L \cos \emptyset$						
17.	Which of the following converts a physical parameter to an electrical signal?	1	K1	<i>CO6</i>			
	(a) Transformer (b) Crystal (c) Speaker (d)Transducer						
18.	Which of the following transducers are classified as passive transducers?	1	K1	<i>CO6</i>			
	1. LVDT						
	2. Strain gauge						
	3. Piezoelectric transducer						
	4. Thermocouple						
	5. Capacitive microphone						
	Select the correct answer using the code given below:						
	(a) Only 1, 2 and 4 (b) Only 1, 2 and 3 (c) Only 1, 2 and 5 (d) 1, 2, 3, 4 and 5						
19.	Which of the following can be measured using tachometers?	1	K1	<i>CO6</i>			
	(a) Angular speed (b) Linear speed (c) Acceleration (d) Vibration						
20.	describes current flow between two junctions formed by two different	1	K1	<i>CO6</i>			
	metals.						
	(a) Peltier effect (b) Thomson effect (c) Seebeck effect (d) None of the mentioned						

PART - B (10 × 2 = 20 Marks)

Answer ALL Questions

21. Find the value of unknown resistance R_2 and total resistance in the circuit shown in Figure 2 K1 CO1 21.

22.	What is the circuit of a practical voltage source and its equivalent current source?	2	K1	COI
23.	Choose the three-phase power expression in terms of phase values.	2	K1	<i>CO2</i>
24.	Infer the points to be considered for power factor improvement.	2	K2	<i>CO2</i>
25.	How transformers classified according to their construction?	2	K1	CO3
26.	Interpret why single phase induction motor is not self-starting.	2	K2	CO3
27.	Compare between the PN and Zener diode.	2	K2	<i>CO</i> 4
28.	Name whether FET is a voltage (or) current controlled device.	2	K1	<i>CO</i> 4

29. What is the use of copper shading bands?

31.

32.

a)

a)

30. What is Hall effect? Mention the applications.

diode and sketch the V-I characteristics. OR b) i) Compare the features and characteristics of CE and CC transistor configurations. 5 5 ii) Interpret the concept and types of Operational amplifier. 35. Summarize the concept and types of Indicating Instruments with neat sketch and 10 a)

K2 CO5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

PART - C $(6 \times 10 = 60 \text{ Marks})$

- **b**) For the circuit shown Figure 31((b),Identify
 - (i) The total resistance between terminals A and B,

Summarize the details of RMS value of Sinusoidal waveform.

- (ii) The total current drawn from a 6V source connected from A to B,
- (iii) The current through 4.7 k Ω and
- (iv) Voltage across 3 k Ω .

OR

K3 CO1

K1

CO5

K1 CO6

2

2

10

10 K3 CO1

10

CO2

K2

	ii)	ii) Compare the features and applications of Current and Potential transformer.					
36.	a)	Explain the working principle of transducer and discuss the Resistive and Inductive transducer with examples.	10	K2	<i>CO6</i>		
		OR					
	b)	Outline the concept and applications of Piezoelectric and Photoelectric transducer.	10	K2	<i>CO6</i>		