	Reg. No.								
	Question Paper Code13290								
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV /	DEC 2024							
Third Semester									
Electronics and Instrumentation Engineering									
(Common to Instrumentation and Control Engineering)									
20ESIT301 - DATA STRUCTURES AND AL CORITHMS									
Regulations - 2020									
Du	Juration: 3 Hours	Max	Mark	rs• 10	00				
Du	$\mathbf{PAPT} = \mathbf{A} (\mathbf{MCO}) (20 \times 1 - 20 \mathbf{Morks})$	Wiax.	wiair	<i>w</i>					
	Answer ALL Questions		Marks	K – Level	СО				
1.	Which of the following data structure is non-linear type?		1	Kl	C01				
	(a) Strings (b) Lists (c) Stacks (d) N	one of the above							
2.	New nodes are added to the of the queue.		1	K1	COI				
	(a) Front (b) Back (c) Middle (d) E	Both A and B	_						
3.	When a pop() operation is called on an empty queue, what is the condition	n called?	1	KI	COI				
4	(a) Underflow (b) Overflow (c) Syntax Error (d) (Jarbage Value	1	KI	cor				
4.	(a) 2 (b) 3 (c) A (d) 5	5	1	KI	002				
5.	The situation when in a linked list START=NULL is)	1	<i>K1</i>	<i>CO2</i>				
	(a) Underflow (b) Overflow (c) Houseful (d) S	Saturated							
6.	For the tree below, write the in-order traversal		1	K2	<i>CO2</i>				
	(a) 6,2,5,7,11,2,5,9,4 (b) 6,5	5,2,11,7,4,9,5,2							
-	(c) $2,7,2,6,5,11,5,9,4$ (d) $2,7$	7,6,5,11,2,9,5,4	1	V I	<i>co</i> 2				
7.	(a) Deguage (b) Dright (c) Tree (c) Tree (c)	ture is suitable?	1	K1	COS				
8	(a) Dequeue (b) Filolity (c) file (a) If two trees have same structure and but different node content, then they	are called	1	K1	CO3				
0.	If two does have sume suderare and but different hode content, then they	are caned							
9.	(a) Synonyms trees(b) Joint tree(c) Equivalent trees(d)The number of edges from the root to the node is called of the fight(b) Depth(c) Length(d) V	l) Similar trees ne tree. Width	1	K1	СО3				
10.	. The number of edges in a complete graph of n vertices is		1	K1	<i>CO</i> 4				
	(a) $n(n+1)/2$ (b) $n(n-2)/2$ (c) $n^2/2$	(d) n							
11.	. A graph in which all vertices have equal degree is known as		1	Kl	<i>CO</i> 4				
10	(a) Complete graph (b) Regular graph (c) Multi graph (d) Simple graph	1	KI	C04				
12.	(a) The deepest node (b) The root node				004				
	(c) The last inserted node (d) Any arbitrary node								
13.	. The total number of comparisons in a bubble sort is		1	Kl	CO5				
	(a) $O(n \log n)$ (b) $O(2n)$ (c) $O(n2)$ (d)) O(n)							

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

14.	The complexity of linear search algorithm is	1	Kl	C05			
15.	(a) $O(n)$ (b) $O(\log n)$ (c) $O(n^2)$ (d) $O(n \log n)$ In, search start at the beginning of the list and check every element in the list.	1	K1	C05			
	(a) Binary Search (b) Linear Search (c) Binary Tree Search (d) Hash Search	,	77.1	005			
16.	(a) Stable (b) Unstable (c) Both stable and unstable (d) None of the above	1	K1	COS			
17.	Which collision resolution technique involves placing collided elements in the next available empty slot in the hash table?			C06			
	(a) Linear Probing (b) Quadratic Probing						
10	(c) Separate Chaining (d) Double Hashing	1	VI	C06			
18.	Which data structure often results in a time-space tradeoff by using extra memory to speed up operations?	1	KI	000			
19.	(a) Arrays (b) Linked Lists (c) Hash Tables (d) None of the above Consider a hash table of size 7, with hash function $H(K)=K\%7$, and pseudo random	1	K1	C06			
	i=(i+5)%7. We want to insert the following keys one by one from left to right. 15, 11, 25,						
	16, 9, 8, 12 What will be the position of the key 25, if we use random probing?						
20	(a) 4 (b) 5 (c) 1 (d) 2 In Extendible Hashing, what data atmusture is used to manage the directory?	1	K I	C06			
20.	(a) Binary Tree (b) Array (c) Linked List (d) Hash Table	1	N1	000			
	$PART - B (10 \times 2 = 20 \text{ Marks})$						
01	Answer ALL Questions	2	K?	COI			
21.	Distinguish between linear and non-linear data structure. $T_{\rm eff} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	2	K2 K2	COL			
22.	Translate the infix $(a+b)^*(c+d)/f$ into postfix expression.	2	KZ	001			
23.	List the basic operations carried out in a linked list.		KI	<i>CO</i> 2			
24.	Define doubly circular linked list.	2	Kl	<i>CO2</i>			
25.	List the steps involved in deleting a node from a binary search tree.	2	Kl	СО3			
26.	Differentiate between Binomial Heaps and Fibonacci Heaps.	2	K2	CO3			
27.	What is the use of Dijksra's algorithm?	2	Kl	<i>CO</i> 4			
28.	Prove that the maximum number of edges that a graph with vertices is $n^{(n-1)/2}$.	2	K2	<i>CO</i> 4			
29.	Compare Linear Search and Binary Search.	2	K2	CO5			
30.	How does insertion sort algorithm work?	2	K1	<i>C06</i>			
PART - C (6 × 10 - 60 Marks)							
	Answer ALL Questions						
31.	a) Explain in detail about the various operations of queue. Write a routine to implement	10	K2	COI			
	enqueue and dequeue operations.						
	OR						
	 b) Write an algorithm to convert an infix expression to a postfix expression. Apply the algorithm to convert infix expression into postfix expression using stack A +(B*C -(D/E^F)*G)*H 	10	K2	01			

32. a) Write and explain algorithm to insert element at the beginning of singly Linked list. 10 K2 CO2

OR

- b) Write a routine to insert and delete an element at the beginning in doubly linked ¹⁰ K² CO² circular list with suitable example.
- 33. a) Create a binary search tree for the following numbers start from an empty binary ¹⁰ K³ CO³ search tree. 45, 26, 10, 60, 70, 30, 40 Delete keys 10, 60 and 45 one after the other and show the trees at each stage.
- K1 Remember; K2 Understand; K3 Apply; K4 Analyze; K5 Evaluate; K6 Create

- b) Write a routine for AVL tree insertion. Insert the following elements in the empty ¹⁰ ^{K3} ^{CO3} tree and how do you balance the tree after each element insertion? Elements: 2, 5, 4, 6, 7, 9, 8, 3, 1, 10.
- 34. a) Write and Trace an algorithm for the BFS & DFS of a graph.

b) Find the Shortest paths in the following weighted graph using Dijkstra's Algorithm. ¹⁰ K³ CO⁴

35. a) Test the numbers 7, 1, 4, 12, 67, 33, and 45 for bubble sort and write a program to ¹⁰ K² CO5 implement bubble sort. How many swaps will be performed to sort these numbers using the bubble sort?

OR

- b) Examine an algorithm to search an element in an array using binary search technique 10 K2 CO5 with an example.
- 36. a) Discuss the concept of separate chaining in hash tables. Explain how it works, its ¹⁰ K2 CO6 advantages and disadvantages, and provide an example to illustrate your points.

3

OR

b) The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table ¹⁰ K2 CO6 of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?