		<u> </u>				
	Reg. No.					
	Question Paper Code12917					
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024						
Third Semester						
Electronics and Instrumentation Engineering						
(Common to Instrumentation and Control Engineering)						
20ESIT301 - DATA STURTURES AND ALGORITHMS						
Regulations - 2020						
Du	Duration: 3 Hours Max. Marks: 100					
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions		Marks ^{K–} Level CO				
1.	Show the postfix expression for the given prefix -*-+abc/ef-g/hi.	2	K2 CO1			
2.	Define a double ended queue.	2	KI COI			
3.	Draw the Circular Linked List and state how it is used.	2	K2 CO2			
4.	When a doubly linked list can be represented as a circular linked list?	2	K2 CO2			
5.	Give the various types of rotations in AVL tree during the insertion of a node.	L 2	K2 CO3			
6.	Define a heap. How can it be used to represent a priority queue?	2	K2 CO3			
7.	Define weighted, unweighted, directed, path, cyclic and acyclic in a graph.	2	K1 CO4			
8.	Define graph and its representation. Give two applications of graphs.	2	K1 CO4			
9.	Sort the following elements 3,1,4,1,5,9,2,6,5 using insertion sort.	2	K2 CO5			
10.	Give the routine for linear search.	2	K2 CO5			

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) Explain how to evaluate arithmetic expressions using stacks with an ¹³ K² CO1 example.

OR

- b) Explain the insertion and deletion operations performed on a circular ¹³ K² CO1 queue with algorithm.
- 12. a) Identify the array implementation of list and Discuss the various ¹³ K² CO² operations of the list ADT with examples.

OR

b) How polynomial manipulations are performed with lists? Explain the ¹³ K² CO² operations with an example.

12917

13. a) What are expression trees? Represent the following expression using 13 K2 CO3 tree: (a-b) / ((c*d)+e). Perform Tree Traversals.

OR

- b) Explain B tree and B+ tree ADT in detail.
- 14. a) Explain an algorithm for all pair's shortest path problem with an ¹³ K2 CO4 example.

OR

b) Illustrate Dijkstra's algorithm for finding the shortest path with the ¹³ K² CO⁴ following graph.

a) Write an algorithm to sort a set of 'N' numbers using bubble sort and ¹³ K2 CO5 demonstrate the sorting steps for the following set of numbers: 30, 52, 29, 87, 63, 27, 19, and 54.

OR

b) Write an algorithm to sort the following numbers using shellsort: 39, 13 K2 CO5 9,81,45,90,27,72,18.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a)	Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash		K3 CO6
		function $h(x) = x \mod 10$. Prepare the resulting for the following:		
		(i) Open a hash table.	3	
		(ii) Open addressing hash table using linear probing.	4	
		(iii) Open addressing hash table using quadratic probing.	4	
		(iv) Open addressing hash table with second hash	1	
		$h2(x) = 7-(x \mod 7).$	4	

OR

b) Explain in detail about extendible hashing with example. 15 K2 CO6

13 K2 CO3