				R	eg. No.										
	Question Paper Co			per Code	le 12514						••				
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023 Third Semester Electronics and Instrumentation Engineering															
(Common to instrumentation and Control Engineering) 20FSME301 - APPLIED THERMODVNAMICS AND FLUID MECHANICS														2	
2	(Regulations 2020)														
Duration: 3 Hours Max. Marks											: 10	00			
			PART	$-A(10 \times 2)$	= 20 Ma	arks)								
			Ans	swer ALL	Question	15] K-I	Mar Leve	ks, el, CO
1.	State Zeroth law of thermodynamics and its applications.											2,.	K1,0	Ċ01	
2.	What is meant by thermodynamic equilibrium?											2,K1,CO1			
3.	Define air standard efficiency.										2,K1,CO2				
4.	Sketch the p-v and T-s diagram for Otto cycle and mention the salient point.											2,.	K2,0	C O 2	
5.	Write the Merits and demerits of the Economizer.											2,K2,CO3			
6.	Differentiate between kinematic similarity and dynamic similarity.												2,K2,CO4		
7.	List	t the types of	fluid flow.										2,K1,CO5		
8.	Write the phenomenon of capillarity. Obtain an expression for capillary rise of a liquid.									ise	2,.	K2,0	C O5		
9.	What is priming? Why is priming needed in centrifugal pumps and not in reciprocating pumps?								in	2,.	K2,0	C O 6			
10.	What is the function of draft-tube?									2,.	K2,	CO6			
PART - B (5 × 13 = 65 Marks) Answer ALL Questions															
11.	a)	A Carnot cy and the sink the source, transfer; and	vele is operatin temperature of calculate (i) l (iii) heat reject	ng betwee of -23°C. efficiency cted to the OR	n the sou If the sys of the sink.	arce stem syste	temp rece em;	pera eive (ii)	atur es 10 the	e of 00 kJ e net	300 / fro -wo	°C om ork	13,	, <i>K3</i> ,	C01
	b)	Two Carnot the intermed that of Secon	engines opera liate temperatund Engine and	ates betwee ure if the v the therm	en 1000 work out al efficie	K a put o ncy	nd 3 of Fi of ei	800 rst ngii	K. Eng nes.	Dete gine i	rmi is h	ne alf	13,	,K2,	CO1
12.	a)	a) A diesel engine has air before compression at 280 K and 85kPa, and the highest pressure is 6 MPa. Find the volumetric compression ratio and the mean effective pressure using cold air properties. OR							nd tio	13,K3,CO2					

- b) Derive the expression for air standard efficiency of Otto cycle with p-V ^{13,K3,CO2} and T-S diagrams.
- 13. a) Explain the function of boiler mountings. Can a boiler work without ^{13,K2,CO3} mountings.

OR

- b) Explain with neat sketches the following boiler accessories: 13,K2,CO3
 (i) Injector; (ii) super heater; (iii) Air preheated; (iv) Economizer.
- 14. a) A hydraulic press has a ram of 30 cm diameter and a plunger of 5 cm ^{13,K3,CO5} diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 400 N.

OR

b) Two pipes A and B are in the same elevation. An inverted U-tube ^{13,K3,CO5} manometer is connected between the two pipes as shown in figure. Water is contained in A and rises to a level of 2 m above it. Pipe B contains an oil of specific gravity 1.7. The inverted U-tube is filled with compressed air at 350kN/m² and 20°C. Determine the pressure difference between A and B and the absolute pressure in B.

15. a) Explain the working principle of impulse turbine.

OR

b) A single-acting reciprocating pump running at 60rpm, delivers ^{13,K3,CO6} 0.009m³/s of water. The diameter of the piston is 20cm and stroke length 30cm. Determine the theoretical discharge, coefficient of discharge, slip and the percentage slip of the pump.

13.K2.CO6

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Show that the fractional torque T of a disc diameter D rotating at a ^{15,K3,CO4} speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given by T = D⁵N² ρ f (μ / D² N ρ).

OR

b) A 1:20 scale model of a submarine is tested in a wind tunnel to ^{15,K3,CO4} measure the drag on a proposed design. A prototype speed of 5 m/s is desired. What speed should be used in the wind tunnel for the model study? What is the ratio of drag forces between the model and the prototype?The density and viscosity of air are 1.22 kg/m³ and 1x10⁵N-s/m², respectively and the corresponding values for sea water are 1025 kg/m³ and 1.5 x 10-3 N-s/m², respectively.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12514