	Reg. No.				_						
	Question Paper Code 12923										
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
	Third Semester										
	Electronics and Instrumentation Engineering										
(Common to Instrumentation and Control Engineering)											
	20ESME301 - APPLIED THERMODYNAMICS AND FLUID MECHA	NIC	CS								
	Regulations - 2020										
Duration: 3 Hours Max. Max. Max. Max. Max. Max. Max. Max.											
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K– Level	<i>C0</i>							
1.	What is meant by thermodynamic equilibrium?	2	K1	CO1							
2.	A heat engine with a thermal efficiency of 45% rejects 500 kJ/kg of heat, How much heat does it receive?	2	K2	CO1							
3.	Draw the Otto cycle on P-v and T-s Diagrams.	2	K2	<i>CO2</i>							
4.	Write the assumptions made for air standard cycle.	2	Kl	<i>CO2</i>							
5.	Write any four Boiler Accessories.	2	Kl	CO3							
6.	Determine the dimension of the following quantities: (i) Discharge (ii) Force (iii) Density	2	K1	СО3							
7.	What are the similarities between model and prototype?	2	K1	<i>CO5</i>							
8.	List the types of fluid flow.	2	Kl	<i>CO5</i>							
9.	State the assumptions used in deriving Bernoulli's equation.	2	Kl	<i>CO6</i>							
10.	What is meant by Priming?	2	K1	<i>CO6</i>							

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Air flows steadily at the rate of 0.5 kg/s through an air compressor ¹³ K² CO1 entering at 7 m/s velocity, 100 kPa pressure, and 0.95 m³/kg specific volume, and leaving at 5 m/s, 700 kPa, and 0.19 m³/kg. The internal energy of air leaving is 90 kJ/kg greater than that of the air entering. Cooling water in the compressor jackets absorb heat at the rate of 58 kW. Estimate: the rate of shaft work input to the compressor.

OR

b) Two reversible heat engines A and B are arranged in series. A ¹³ K² CO1 rejecting heat directly to B. Engine receives 200 KJ at a temperature of 421° C from a hot source, while engine B is in communication with a cold sink at a temperature of 4.4° C. If the work output of A is twice that of B, Identify the intermediate temperature between A and B; Identify the Efficiency of each engine.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

10	2)	Device the evenession for single devident officiency of Otto evelop with a	13	K3	CO^{2}				
12.	a)	V and T-S diagrams.	15	КJ	02				
	Ŭ OR								
	b)	Calculate the air standard efficiencies for the Otto and Diesel cycles on the basis of equal compression ratio of 10 and equal heat rejection of 840 kJ/kg. The suction conditions are 1 bar and 328 K.	13	K2	<i>CO2</i>				
13.	a)	Explain with neat sketch the following mounting:(i) Water level indicator (ii) Pressure gauge (iii) Feed check value (iv) Blow of cock .	13	K2	СО3				
		OR							
	b) i)	Explain any three the factors affecting the selection of boiler.	6	K2	CO3				
	ii)	Differentiate fire tube boiler and water tube boiler.	7	K2	CO3				
14.	a)	State and prove the Pascal's law.	13	K2	CO5				
		OR							
	b) i)	Calculate the specific weight, density and specific gravity of 1 liter of liquid which weighs 7 N.	6	K2	CO5				
	ii)	Find the Kinematic viscosity of an oil having density 981 kg/m. The shear stress at a point in oil is 0.2452 N/m^2 and velocity gradient at that point is 0.2 /sec.	7	К2	<i>CO5</i>				
15.	a)	Discuss characteristics curve, load efficiencies of turbines.	13	K2	<i>CO6</i>				
		OR							

b) Explain the working principle of single and double acting centrifugal ¹³ K² CO6 pump with neat diagram in detail.

PART - C (1 × 15 = 15 Marks)

16. a) The pressure difference Δp in a pipe of diameter D and length l due to ¹⁵ K3 CO4 turbine flow depends on the velocity v, viscosity μ , density ρ and roughness K. Apply Buckingham's phi theorem, obtain an expression for Δp .

OR

b) Derive on basis of dimensional analysis suitable parameters to present ¹⁵ K3 CO4 the trust developed by a propeller. Assume that the thrust P depends upon the angular velocity ω , speed of Advance V, diameter D, dynamic viscosity μ , mass density ρ , elasticity of the fluid medium which can be denoted by the speed of sound in the medium C.