		Reg. No.											
	Question Paper Code	12718]									
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024												
	Fourth Semester												
Instrumentation and Control Engineering													
(Common to Electronics and Instrumentation Engineering)													
	20ICPC401 - CONTH	ROL SYST	EN	IS									
	Regulations	- 2020											
	(Use of Semi log, Polar and Ora	linary Grap	hs i	is pe	rmi	tted)							
Duration: 3 Hours						Max. Marks: 100							
	PART - A (10 × 2 = Answer ALL O	20 Marks) uestions						Mar	ks L	K – evel	CO	I	
1.	Distinguish between open loop and closed loo	op system.						2	1	K2	CO	1	
2.	What are the characteristics of servomotors?							2	1	K1	CO	1	
3.	Differentiate type and order of a system.							2	1	K2	CO	2	
4.	What is steady state error?							2	1	K1	CO	2	
5.	Define gain Margin.							2	1	K1	CO.	3	
6.	Mention the frequency domain specifications.							2	1	K2	CO.	3	
7.	State dominant pole.							2	1	K1	CO	4	
8.	What is BIBO Stability? Mention its requirem	nent.						2	1	K2	CO4	4	
9.	Define lag-lead compensator.							2	1	K1	CO:	5	
10.	Draw the S-plane representation of lead comp	ensator.						2	1	K2	CO:	5	

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) Write the differential equations of the mechanical system shown in fig ¹³ K³ CO1 and draw the force-voltage & force - current analogous circuit and verify by writing Mesh and Nodal equations.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

b) Obtain the closed loop transfer function C(S) / R(S) using block ¹³ K3 CO1 diagram reduction techniques.

- 12. a) i) The open loop transfer function of a unity feedback system is given by 7 K3 CO2 G(s) = K/s(sT+1), where K and T are positive constants. By what factor should the amplifier gain K be reduced, so that the peak overshoot of unit step response of the system is reduced from 75% to 25%?
 - ii) A closed loop servo is represented by the differential equation 6 K3 CO2 $d^{2}c/dt^{2}+8dc/dt = 64\rho$, where c is the displacement of output shaft, r is the displacement of the input shaft and $\rho=(r-c)$.Determine undamped natural frequency, damping ratio and percentage maximum overshoot for unit step input.

OR

- b) Derive the expressions for Time domain specifications with unit step 13 K3 CO2 input.
- 13. a) Sketch the bode plot for the following transfer function and determine ¹³ K³ CO³ the system gain K for the gain cross over frequency to be 5 rad/sec. $G(s) = Ks^2/(1+0.2s)(1+0.02s).$

OR

- b) Sketch the polar plot for the following transfer function and find Gain ¹³ K³ CO³ margin and Phase margin. $G(S) = 1/s^2(1+s)(1+2s)$.
- 14. a) G(s) = K/s(s+2)(s+4) Sketch the Root locus, find the value of K so that ¹³ K³ CO4 $\zeta = 0.5$.

OR

- b) Construct the Nyquist plot for a system whose open loop transfer ¹³ K3 CO4 function is given by $G(s)H(s) = K(1+s)^2/s^3$. Find the range of K for stability.
- a) Consider a unity feedback system with open loop transfer function ¹³ K3 CO5 G)s)= K/s(s+8). Design a lead compensator to meet the following specifications. (i) Percentage peak overshoot=9.5% (ii) Natural frequency of oscillation = 12 rad/sec (iii) Velocity error constant Kv≥ 10.

OR

b) A unity feedback system has open loop transfer function of I3 K3 CO5 G(S)= K/s(1+2s). Design a suitable lag compensator that the phase margin is 40° and steady state error for ramp input is less than or equal to 0.2.

12718

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

PART - C $(1 \times 15 = 15 \text{ Marks})$

- 16. a) i) The characteristic polynomial of a system is 8 K3 CO4 $s^7+5s^6+9s^5+9s^4+4s^3+20s^2+36s+36=0$. Determine the location of roots on s-plane and hence the stability of the system.
 - ii) Write the procedure for design of lag compensator using bode plot. 7 K2 CO5

OR

- b) i) The open loop transfer function of a unity feedback system is given by 8 K3 CO4 $G(s)=K(s+1)/s^3+as^2+2s+1$. Determine the value of K and a so that the system oscillates at a frequency of 2rad/sec.
 - ii) Write the procedure for design of lag –lead compensator using bode 7 K2 CO5 plot.