		_													_
			Reg. No.												
	Question Paper Code			12883											
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024														
Fifth Semester															
Electronics and Instrumentation Engineering															
20ICPC501 - PROCESS CONTROL															
Regulations - 2020															
Duration: 3 Hours Max. Marks: 100												100			
PART - A (10 × 2 = 20 Marks) Answer ALL Questions										Marks	K– Level	со			
1. Write the mathematical model representation of pressure process.										2	K1	CO1			
2.	Sketch the Heat exchanger feedback control.										2	K2	CO1		
3.	Give the functions of an actuator and list different types of actuators.									2	K2	<i>CO2</i>			
4.	4. Why installed characteristics of a control valve are different from inheren characteristics?									rent	2	K2	<i>CO2</i>		
5.	5. Conclude why derivative mode of control is not recommended for a noisy process?									oisy	2	K1	СО3		
6.	Compare P, l and D controller.										2	K2	СО3		
7.	Distinguish between IAE and ISE.										2	K2	<i>CO4</i>		
8.	List the advantages of cascade control over conventional control.										2	K2	<i>CO4</i>		
9.	Summarize the final Smith Predictor Control system diagram.										2	K2	<i>CO5</i>		
10.	Define IMC controller and multi variable control.										2	K1	<i>CO5</i>		

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

- 11. a) i) Explain the distinction between servo and regulatory operations, using 7 K2 CO1 an appropriate example to illustrate.
 - ii) Clarify the dissimilarity between interacting and non-interacting 6 K2 CO1 processes, providing relevant examples for better understanding.

OR

- b) Explore the principles and levels associated with process control and ¹³ K² CO1 derive the mathematical model of a flow process.
- 12. a) Provide the flow equation for an equal percentage valve and illustrate ¹³ K2 CO2 its inherent valve characteristics through a sketch.

OR

b) Define cavitations and flashing in control valves and outline methods ¹³ K² CO² for prevention.

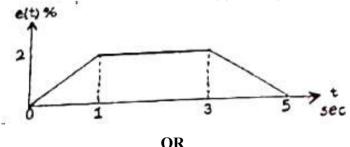
12883

13. a) A PI controller has proportional band of 20% and integral time of ¹³ K² CO³ 10seconds. For a constant error of 5%. Evaluate the controller output after 10 seconds. The controller offset is 25%.

OR

- b) Discuss the need and benefit of each mode of composite PID ¹³ K² CO³ controller with suitable illustration.
- 14. a) Design and describe the process reaction curve method and explain ¹³ K³ CO⁴ how to arrive at optimum controller setting for P, PI and PID controllers using any one tuning criteria.

OR


- b) Examine the process of configuring controller parameters through the ¹³ K³ CO⁴ frequency response method.
- 15. a) Elaborate on the Internal Model Control (IMC) design procedure, ¹³ K² CO5 including the essential equations involved.

OR

b) Contrast the feedback + feed forward and Cascade control schemes for ¹³ K2 CO5 heat exchanger control. Provide a loop schematic and enumerate the advantages and disadvantages of each scheme.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Draw the plot of PID controller output for the following error pattern. ¹⁵ K2 CO3 (Kp =5. τ I = 1 sec and τ D= 0.5 sec and Ps(0) = 10%).

- b) i) Describe the practical parallel forms of a PID controller at an applied 8 K2 CO3 level.
 - ii) Tabulate the key characteristics of commercial PID Controllers. 7 K2 CO3