		Reg.	No.														
	Question Paper Co	de	13188														
	B.E. / B.Tech DEGREE EX		NATI	O	NS. N	10	V /	DE	EC	202	24						
	Seventh Semester																
	Instrumentation and Control Engineering																
	(Common to Electronics and Instrumentation Engineering)																
	20ICPW701 - INSTRUMENTATION SYSTEM DESIGN WITH LABORATORY																
	Regula	tions -	2020														
Duration: 3 Hours Ma												⁄lax	. Ma	rks: 100			
	PART - A (MCQ)	•			lark	s)								Marks	K – Level	со	
	Answer AL	~							-								
1.	A design engineer needs to choose the appropria												а	1	K1	<i>CO1</i>	
	measuring circuit. Which of the following wire r application?	nateria	ais is i	ne	mos	t ap	pro	opri	late	: 10	ru	115					
	(a) Copper wire (b) Aluminium wire (c)	Platin	um w	ire		(d	l) N	lick	el v	wir	e						
2.	An operator notices that the flow rate indicated b	by the	rotam	ete	r is f									1	K1	<i>CO1</i>	
	Which of the following is the most likely cause of		.					1									
		he flo			-					·1	- 4 -	1					
3.	(c) The fluid temperature has changed (d) T What is the unit of measurement used in a rotam	The rot	amete	r 19	s not	pro	ope	riy	car	ibra	ate	a		1	K1	COI	
5.	(a) Liters (b) Cubic meters per second		c) Pas	ca	l		(ď) N	ewt	ton							
4.	Which forces are acting in a rotameter?)		-		()	,						1	K1	<i>CO1</i>	
	÷) Buoy	ancy	for	ce ar	nd r	nag	gnet	tic 1	for	ce						
_		Visco														<i>a</i>	
5.	Which among the following fluid parameters are			led										1	KI	<i>CO2</i>	
6.	(a) Pressure (b) Rate of flow The valve packing of control valves is used	(c) Sp	eea		(C	1) L	nre	ctic	on o	5I I	101	N		1	K1	<i>CO2</i>	
0.	(a) to prevent the fluid from escaping	-															
	(b) to control the force generated by actuators																
	(c) to control different parameters of the fluid																
_	(d) to control the direction of flow			0.1	a	. 10								,	<i>V</i> 1	<i>co</i> 2	
7.	Which among the following are not the 'work pa(a) Direction(b) Speed(c) Pre				ie flu) Ten			1.000	of	fla				1	KI	<i>CO2</i>	
8.	(a) Direction (b) Speed (c) Pre Which of the following quantities can be measured			~ ~		npe	Tau	ure	01	110	w			1	K1	<i>CO2</i>	
0.	(a) Absolute pressure (b) Gauge pressure (c) Dif		•			l) A		of t	he	me	nti	on	ed				
9.	Which factor ensures that a pump has a long life													1	K1	СО3	
	(a) Power (b) Efficiency (c) Reliable	•			Depro												
10.	What is the primary objective of preventive main							m?						1	K1	CO3	
		Exter Enha						rali	ahi	lite	,						
11	What is the purpose of a pump impeller in pump			vei	an sy	/510	111 1		aui	my				1	K1	CO3	
		To reg		th	e pur	np	spe	ed									
		To se	-		-	-	-										
12.	The Q-H curve for a pump is typically provided													1	K2	СО3	
10	(a) Pump operator (b) Pump manufacturer (c)	Regu	latory	au	thori	ity	(0	1) F	Iui	d s	upp	plie	er	1	V^{1}	001	
13.	Example of PLC Pump Permissive Interlock is	(h) T -		D-	0000									1	K1	<i>CO</i> 4	
		(b) Lo (d) Hig					era	atur	e								
	(c) Low Douring temperature ((a) 111 <u>8</u>		*1 11	-5 10	ուե	~10	uui	·								

14.	Which of the following is the primary function of a PID controller?(a) Frequency modulation(b) Temperature control	1	K1	<i>CO</i> 4					
15.	 (c) Data encryption (d) Audio amplification (d) Audio amplification (e) reinperature control (f) reinperature control (g) Audio amplification 	1	K1	<i>CO4</i>					
16	(b) Calibrating the display settings(c) Optimizing the PID parameters for better performance(d) Changing the power supply voltage	1	K1	<i>CO4</i>					
16.	 What is the sampling time in a microprocessor-based PID controller? (a) The time it takes to process one control loop iteration (b) The duration of a single measurement (c) The time between consecutive measurements 	1	K1	04					
17.	(d) The time it takes to power on the controller In a controller, what does the "set point" represent?	1	K1	CO5					
17.	(a) The value to which the controlled variable should be maintained								
	(b) The bias error								
	(c)The controller's output value(d) The integral time (Ti)								
18.	A temperature control system consistently overshoots the set point. Which parameter	1	K2	CO5					
	should be adjusted to reduce this overshooting?								
	 (a) Increase integral time (Ti) (b) Increase proportional gain (Kp) (c) Increase derivative time (Td) (d) Decrease integral time (Ti) 								
19.	How many control terms are included in a PID controller?	1	K1	CO5					
	(a) One (b) Two (c) Three (d) Four								
20.	What is the primary purpose of a controller's bias setting?	1	K1	<i>CO5</i>					
	(a) To control the sensitivity of the controller(b) To maintain a constant set point								
	(c) To eliminate transient errors								
	(d) To offset the controlled variable from the set point								
PART - B (10 × 2 = 20 Marks) Answer ALL Questions									
21.	Summarise the requirements of Cold Junction Compensation for Thermocouples.	2	K2	CO1					
22.	Illustrate with formula the parameters needed to find the volumetric flow rate of Rotameter.	2	K2	CO1					
23.	Materials used for the design of bourdon gauge influences the application. Justify.	2	K1	<i>CO2</i>					
24.	Give the applications of Globe Valve and Gate Valve.	2	K1	<i>CO2</i>					
25.		-	1/2	CO3					
20	Classify the Pumps on the basis of mechanical principle of operation.	2	K2						
26.	Classify the Pumps on the basis of mechanical principle of operation. What are the causes for cavitations in Pumps?	2 2	К2 К1	CO3					
27.	What are the causes for cavitations in Pumps? Draw the block diagram of PID controller configuration used in microprocessor based controller design.	2 2	K1 K1	<i>CO4</i>					
27. 28.	What are the causes for cavitations in Pumps? Draw the block diagram of PID controller configuration used in microprocessor based controller design. State the concept of Alarm Annunciator with necessary examples.	2 2 2	K1 K1 K1	CO4 CO4					
27. 28. 29.	What are the causes for cavitations in Pumps? Draw the block diagram of PID controller configuration used in microprocessor based controller design.	2 2	K1 K1	<i>CO4</i>					

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31.	a)	Make use of Bernoulli's equation; derive the volumetric flow rate and Cd for orifice	10	K2	COI
		meter.			

OR

	b)	Determine the nominal flow velocity V2 at the orifice having a dia of 20 mm kept in a pipe of 40mm dia. Reynolds number is 10 powers 5. Assume density of water = 1000 kg per meter cube and Kinematic Viscosity id 10 power -2 stokes (square cm/ sec). For this given problem also calculate the pressure difference at the tappings. Assume corner tapping is selected. Coefficient of Discharge= 0.61.	10	K3	<i>CO1</i>
32.	a)	Compare the C type and Spiral forms of bourdon tube design and discuss in detail the design criteria with respect to pressure measurement applications. OR	10	K2	CO2
	b)	Write notes on (i) Hydraulic Actuators (ii) Spring less Diaphragm Actuators.	10	K2	<i>CO2</i>
33.	a)	Calculate the critical length of 6NPS s40 pipe and correction factors A and B. OR	10	K3	СО3
	b)	Explain in detail Pump Characteristic Curves and the inferences.	10	K2	СО3
34.	a)	Draw and explain an Alarm Logic circuit for House Alarm Application. OR	10	K2	<i>CO</i> 4
	b)	Construct with interfacing diagram in detail for Microcontroller Based Data Acquisition System.	10	K3	<i>CO4</i>
35.	a)	An integral control system will have a measurement range of 0.4 to 2.0V and an output range of 0 to 6.8V. Design an Op amp integral controller to implement a gain of k_I =4% (%-min). Specify the values of G_I , R and C. OR	10	K3	CO5
	b)	A proportional - derivative controller has a 0.4 to 2.0V input measurement range, a 0 to 5V output, $K_P=5\%$ / %, and $K_D=0.08\%$ per (%-min). The period of the fastest expected signal change is 1.5S. Implement this controller with a op amp circuit.	10	К3	CO5
36.	a) i)	Explain in detail about time version Variables of Discrete PID controller. Brief with necessary equations.	5	K2	<i>CO4</i>
	ii)	A type-J thermocouple (TC) with a 0° C reference is used to control temperature between 100° and 200° C. Design a proportional – integral controller with a 40% band and a 0.08min reset (integral) time. The final control element requires a 0-10V range.	5	K3	CO5
	1 \ '\	OR	5	K٦	CO4
	b) 1)	Explain with a functional block diagram of MBAS 9400 microcontroller based Alarm system with design features and functional features with Technical specifications.	5	κ2	CO4
	ii)	A temperature controller controls temperature from 100° to 200° C. A sensor provides an output of 2 to 8v for this temperature range. The controller output drives a heater with an output of 0 to 5 volts. What circuit gain is needed if the Proportional controller is to be used with a gain of $4\% / \%$?	5	K3	CO5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create