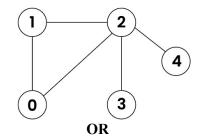
	Reg. No.				
	Question Paper Code13210				
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024				
	Third Semester				
	Information Technology				
	(Common to Computer Science and Engineering, Computer Science and Engineering (IoT),			
M.T	ech - Computer Science and Engineering(5 Years Integrated) & Sixth Semester - Electrical a	and E	lectro	onics	
	Engineering)				
	20ITPC301 - DATA STRUCTURES				
Regulations - 2020					
	iteguiations 2020				
Dı	C C	. Maı	:ks: 1	00	
Dı	uration: 3 Hours Max $PAPT = A (MCO) (20 \times 1 - 20 Marks)$		cks: 1 K– Level		
Du 1.	uration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks)		K – Level		
	wration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions Which of the following real world scenarios would you associate with a stack data structure? (a) piling up of chairs one above the other	Marks	K – Level	со	
	uration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions Which of the following real world scenarios would you associate with a stack data structure? (a) piling up of chairs one above the other (b) people standing in a line to be serviced at a counter	Marks	K – Level	со	
	wration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions Which of the following real world scenarios would you associate with a stack data structure? (a) piling up of chairs one above the other (b) people standing in a line to be serviced at a counter (c) offer services based on the priority of the customer	Marks	K – Level	со	
1.	uration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions Which of the following real world scenarios would you associate with a stack data structure? (a) piling up of chairs one above the other (b) people standing in a line to be serviced at a counter (c) offer services based on the priority of the customer (d) Tatkal Ticket Booking in IRCTC	Marks	K– Level K1	со	
	wration: 3 Hours Max PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions Which of the following real world scenarios would you associate with a stack data structure? (a) piling up of chairs one above the other (b) people standing in a line to be serviced at a counter (c) offer services based on the priority of the customer	Marks 1	K– Level K1	co CO1	

	(a) Top	(b) Last	(c) Final	(d) End			
4.	How many null pointers	exist in a doub	ly linked list?		1	Kl	<i>CO2</i>
	(a) 0	(b) 1	(c) 2	(d) 3			
5.	Given two statements:				1	K1	<i>CO2</i>
	(i) Insertion of an elem	ent should be d	one at the last nod	e in a circular list			
	(ii) Deletion of an element should be done at the last node of the circular list						
	(a) Both are true		(b)	Both are False			
	(c) First is false and seco	ond is true	(d)	None of the above			
6.	A linear collection of da	ta elements wh	ere the linear node	e is given by means of pointer is	1	K1	<i>CO2</i>

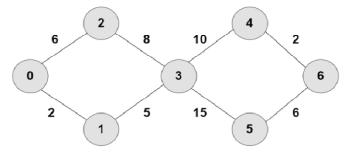
(a) Social Network Analysis

A linear collection of data elements where the linear node is given by means of pointer is called? (a) Linked list (b) Node list (c) Primitive list (d) Unordered list

	(a) Linked list (b) Node list (c) Filinitive list (d) Onordered list			
7.	Which type of traversal of binary search tree outputs the value in sorted order?	1	K1	CO3
	(a) Pre-order (b) In-order (c) Post-order (d) None			
8.	The post-order traversal of the binary tree is DEBFCA. Find out the pre-order traversal.	1	K1	CO3
	(a) ABFCDE (b) ADBFEC (c) ABDECF (d) ABDCEF			
9.	The number of edges from the root to the node is called of the tree.	1	K1	CO3
	(a) Height (b) Depth (c) Length (d) Width			
10.	A graph with all vertices having equal degree is known as a	1	K1	<i>CO</i> 4
	(a) Multi Graph (b) Regular Graph (c) Simple Graph (d) Complete Graph			
11.	In most of the cases, topological sort starts from a node which has	1	K1	<i>CO</i> 4
	(a) Maximum Degree (b) Minimum Degree (c) Any degree (d) Zero Degree			
12.	The travelling salesman problem can be solved using	1	K1	<i>CO</i> 4
	(a) A spanning tree (b) A minimum spanning tree			
	(c) Bellman – Ford algorithm (d) DFS traversal			
13.	Which of the following is an application of graphs?	1	K1	CO5


(c) Scheduling Problems (d) All of the above K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 13210

(b) Routing Algorithms


14.	Prim's Algorithm starts from:	1	K1	CO5
	(a) The vertex with the highest weight (b) Any vertex of the graph			
15	(c) The vertex with the lowest weight (d) The center of the graph Which algorithm is used to find the shortest path in a weighted graph?	1	K1	CO5
15.	(a) Depth-First Search (b) Breadth-First Search			
	(c) Dijkstra's Algorithm (d) Kruskal's Algorithm			
16.	Which of the following algorithms solves the all-pair shortest path problem?	1	K1	<i>CO</i> 5
	(a) Floyd's algorithm (b) Prim's algorithm			
	(c) Dijkstra's algorithm (d) Warshall's algorithm			
17.	What is the advantage of selection sort over other sorting techniques?	1	K1	<i>CO6</i>
	(a) It Is faster than any other sorting technique			
	(b) It is scalable (a) It works best for inputs which are already sorted			
	(c) It works best for inputs which are already sorted(d) It requires no additional storage space			
18.	How many passes does an insertion sort algorithm consist of?	1	K1	<i>CO</i> 6
10.	(a) N (b) N-1 (c) N+1 (d) N^2			
19.	Which of the following real time examples is based on insertion sort?	1	K1	<i>CO6</i>
	(a) arranging a pack of playing cards (b) database scenarios and distributes scenarios			
	(c) arranging books on a library shelf (d) real-time systems			
20.	What is the hash function used in the division method?	1	K1	<i>CO6</i>
	(a) $h(k) = k/m$ (b) $h(k) = k \mod m$ (c) $h(k) = m/k$ (d) $h(k) = m \mod k$			
	PART - B ($10 \times 2 = 20$ Marks)			
	Answer ALL Questions			
21.	Discuss about ADT.	2	K2	<i>CO1</i>
22.	List the applications of stack.	2	K2	<i>CO1</i>
	Difference between arrays and lists.	2	K2	<i>CO2</i>
	Write down the steps to modify a node in linked lists.	2	K2	CO2
	Discuss node, degree, siblings, depth/height, level with example.	2	K2	CO3
	State AVL Tree.	2	K2	CO3
		2	K2 K2	
	7. Illustrate graph and its representation. Give two applications of graphs.			CO4
	State Euler circuits cut vertex and loop in a graph.	2	K2	<i>CO</i> 4
29.	. Illustrate spanning tree of a graph.			CO5
30.	Distinguish between linear and binary search techniques.	2	K2	<i>CO6</i>
	PART - C (6 × 10 = 60 Marks)			
	Answer ALL Questions	10	W2	<i>co</i> 1
31.	a) Write an algorithm to convert an infix expression $(a+b)*c/d+e/f$ to a postfix	10	K2	<i>CO1</i>
	expression. OR			
	b) Explain in detail about Stack and its operation with an algorithm.	10	К2	CO1
	b) Explain in detail about Stack and its operation with an argorithm.	10	112	001
32.	a) Explain the steps involved in insertion and deletion into a singly linked list(any 2	10	K2	<i>CO2</i>
34.	operations)	÷		
	OR			
	b) Write an algorithm to perform the following operations in a doubly linked list	10	K2	<i>CO2</i>
	(i) insert a node after a given node			

(i) insert a node after a given node (ii) delete the last node of the list

- 33. a) Construct a B tree of order 5 by inserting the following elements: ¹⁰ K3 CO3 3,14,7,1,8,5,11,17,13,6,23,12,20,26,4,16,18,24,25 and 19. OR
 - b) Construct an AVL Tree with following elements: 10 15 9 12 13 79 45 36 22. 10 K3 CO3
- 34. a) Interpret the following graph using BFS.

- b) Explain in detail various representations of graphs with example. 10 K2 CO4
- 35. a) Develop the Shortest Paths from Source to all Vertices using Dijkstra's Algorithm 10 K3 CO5

OR

1

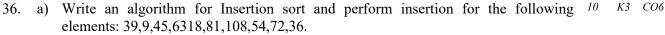
2

4

3

5

D


-5

b) Explain bellman Ford algorithm for the example graph.

4

2

3

OR

- b) Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function 10 K3 CO6 h(x) = x mod 10. Prepare the resulting for the following:
 (i) Open a hash table.
 - (ii) Open addressing hash table using linear probing.
 - (iii) Open addressing hash table using quadratic probing.
 - (iv) Open addressing hash table with second hash $h2(x) = 7 (x \mod 7)$.

10 K3 CO5

