Reg. No.						
T		-				
 -						

Question Paper Code

12341

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Third Semester

Information Technology

(Common to Computer Science and Engineering, Computer Science and Engineering (IoT), Computer Science and Engineering (Cyber Security), Computer and Communication Engineering, M.Tech.- Computer Science and Engineering & Sixth Semester - Electrical and

Electronics Engineering)

20ITPC301 - DATA STRUCTURES

(Regulations 2020)

Duration: 3 Hours

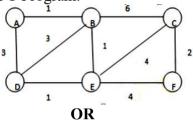
Max. Marks: 100

PART - A (10 × 2 = 20 Marks)
Answer ALL Ouestions

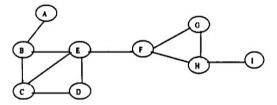
1.	Write the routine to pop an element from a stack.	Marks, K-Level, CO 2,K2,CO1	
2.	Define Priority Queue. How Priority Queue is implemented?		
3.	Write the advantages of Array over Linked List.		
4.	How can the Doubly Linked List be represented?		
5.	List the properties of B+ tree.	2,K1,CO3	
6.	What are Threaded Binary Trees? Represent it with a neat sketch.		
7.	State the Principle of Topological sorting.	2,K1,CO4	
8.	Define graph and its representation. Give two applications of graphs.	2,K1,CO4	
9.	What are the various factors to be considered in deciding a sorting algorithm?	2,K1,CO5	
10.	What do you mean by internal and external sorting?	2,K1,CO5	
PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions			

11.	a)	Explain how to evaluate arithmetic expressions using Stack.	13,K2,CO1
-----	----	---	-----------

OR


- b) Explain the implementation of Circular Queue ADT. *13,K2,C01*
- 12. a) Explain the operations and implementation of Circular Linked List. *13,K2,CO2*

OR


- b) Explain the implementation of the following operations in a Singly ^{13,K2,CO2} Linked List.
 - (i) Inserting a node after a given node.
 - (ii)Deleting a last node.
- 13. a) Construct an AVL tree with the values 3,1,4,5,9,2,8,7,0 into an initially ^{13,K3,CO3} empty tree. Write the code for inserting into an AVL tree.

OR

- b) Explain insert and delete operations of heap in detail. Show the result ^{13,K2,CO3} of inserting 15, 17, 6, 19, 11, 10, 13, 20, 8, 14, 12 one at a time into an initially empty binary min heap. Also show the result of performing three delete Min operations.
- 14. a) Explain Minimum Spanning tree using Prim's algorithm for the ^{13,K3,CO4} following graph with C Program.

b) Explain the Breadth First Search (BFS) for the following graph with C ^{13,K3,CO4} Program.

15. a) Perform Insertion sort for the following array: ^{13,K2,CO5} 39,9,45,63,18,81,10,8,54,72,36.

OR

b) Explain Radix Sort implementation with an example. *13,K2,C05*

PART - C $(1 \times 15 = 15 \text{ Marks})$

- a) Explain Hash function. Show the method to insert the given set of data ^{15,K2,CO6} to enter into hash table without collision:
 2, 3, 5, 7, 11, 13, 15, 6, 4, 24, 43, 46, 55, 67.
 - b) Describe Rehashing and Extendible Hashing technique with suitable ^{15,K2,C06} example.