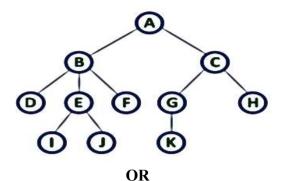
	Question Paper Code	Reg. No.)								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
Sixth Semester											
Electrical and Electronics Engineering											
20ITPC301– DATA STRUCTURES											
Regulations - 2020											
Duration: 3 Hours Max							lax.	x. Marks: 100			
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions						Marks $\frac{K}{Level}$ CO					
1.								2	K1	CO1	
2.	Illustrate how circular queue is better than standard linear queue and Why?						?	2	K3	CO1	
3.	Difference between singly linked list and circular linked list.							2	K2	<i>CO2</i>	
4.	List the advantages and disadvantages of links	ed lists over a	arra	ıys.				2	K1	<i>CO2</i>	
5.	State the properties of Heap.							2	Kl	CO3	
6.	Define Binary Search Tree.							2	Kl	CO3	
7.	Differentiate breadth first search and depth fir	st search.						2	K2	<i>CO4</i>	
8.	State about Euler circuit.							2	K1	<i>CO4</i>	
9.	Define Double Hashing.							2	K1	<i>CO6</i>	
10.	State about the collision in hashing.							2	K1	CO6	

PART - B $(5 \times 13 = 65 \text{ Marks})$

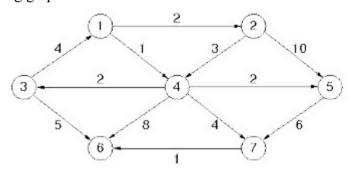
Answer ALL Questions


11. a) Show the procedure to convert the infix expression to postfix ¹³ K³ CO1 expression and also Convert the expression (A*B)+(C/D)-(D+E) to its postfix form.

OR

- b) Illustrate the concept of Linked List implementation of a Queue ADT ¹³ K3 CO1 with suitable example.
- 12. a) Examine with an example and algorithms to implement the singly ¹³ K³ CO² linked list and perform all the operations on the created list.

OR


b) Apply and recommend an algorithm to add two polynomials ¹³ K3 CO2 represented by linked list representation. Apply the function for the following input. $A=3x^2+2x+1$, $B=8x^2+3x+10$ 13. a) Design the tree traversal and apply the concept of tree traversal to find ¹³ K³ CO³ the inorder, preorder, postorder traversal for the following tree.

- b) Compute the AVL Tree for 3, 2, 1, 4, 5, 6, 7, 16, 15, 14 and write the ¹³ K³ CO³ insertion routine for AVL Tree.
- 14. a) Apply the Prims algorithm to find the minimum spanning tree with an ¹³ K³ CO⁴ example.

OR

b) Apply the Dijkstra's algorithm to find the shortest path for the ¹³ K³ CO⁴ following graph.

- 15. a) Explain in detail about rehashing with an example. 13 K2 CO6 OR
 - b) Discuss in detail about Extendible hashing with an example 13 K2 CO6

PART - C $(1 \times 15 = 15 \text{ Marks})$

a) Write an algorithm to sort a set of 'N' numbers using bubble sort and ¹⁵ K3 CO5 demonstrate the sorting steps for the following set of numbers: 30, 52, 29, 87, 63, 27, 19, 54.

OR

b) Describe the linear search algorithms with an example to search the ¹⁵ K2 CO5 number from the array.

12749