	Re	g. No.								
	Question Paper Code	1251	1							
B.E. / B. T	ech DEGREE EXAM	INATION	S, NC)V /	DE	C 2	023	3		
Fourth Semester										

Information Technology

(Common to Computer Science and Engineering & M.Tech - Computer science and

Engineering)

20ITPC401 - DESIGN AND ANALYSIS OF ALGORITHMS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	State Algorithm and Pseudocode.	Marks, K-Level, CO 2,K1,CO1
2.	Differentiate time complexity and space complexity	2,K2,CO1
3.	What do you mean by Algorithm Visualization?	2,K1,CO2
4.	Define Closest Pair Problem.	2,K1,CO2
5.	Show the recurrence relation of divide and conquer.	2,K1,CO3
6.	What are the advantages and disadvantages of brute force approach?	2,K2,CO3
7.	State articulation point in graph.	2,K1,CO4
8.	Define Network Flow and Cut.	2,K1,CO4
9.	What is backtracking and Branch and bound algorithm?	2,K1,CO6
10.	Define subset sum.	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) (i) Describe the mathematical analysis and its efficiency of non ^{7,K2,CO1} recursive matrix multiplication algorithm.

(ii) Illustrate the efficiency of finding the element with maximum value *6,K2,C01* in a given Array.

OR

- b) Describe the steps that need to be followed while designing and 13,K2,CO1 analyzing an algorithm.
- 12. a) Explain in detail about Travelling Salesman Problem using exhaustive ^{13,K2,CO2} search.

OR

b) Solve 2138×4967 by applying the Divide and Conquer method and ^{13,K3,CO2} give the time and space complexity of Divide and conquer methodology.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12511

13. a) Explain multistage graph and explain memory functions problem in ^{13,K2,CO3} detail.

OR

b) Solve the all-pairs shortest-path problem for the digraph with the ^{13,K3,CO3} following weight matrix:

0	2	∞	1	8
6	0	3	2	∞
∞	∞	0	4	∞
∞	∞	2	0	3
3	∞	∞	∞	0

14. a) Explain in detail about Maximum Flow Problem with suitable ^{13,K2,CO4} examples.

OR

b) Explain a stable marriage matching for the instance defined by the ^{13,K3,CO4} following ranking matrix :

	A	B	C	D
α	1, 3	2, 3	3, 2	4, 3
β	1, 4	4, 1	3, 4	2, 2
Y	2, 2	1, 4	3, 3	4, 1
δ	4, 1	2, 2	3, 1	1, 4

15. a) Find the instance of the knapsack problem using the branch and bound 13, K3, CO6 algorithm. Knapsack capacity W=10.

Item	Weight	Value			
1	4	\$40			
2	7	\$42			
3	5	\$25			
4	3	\$12			
<u>OP</u>					

b) Apply Branch and Bound algorithm to solve the travelling salesman ^{13,K3,CO6} problem for

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12511

16. a) Let $w = \{5,7,10,12,15,18,20\}$ and m = 35. Compute all possible subset of 15, K3, CO5 w whose sum is equivalent to m. Draw the portion of state space tree.

OR

b) Apply backtracking to solve the following instance of the subset sum 15,K3,CO5 problem : A= {1,3,4,5} and d= 11.