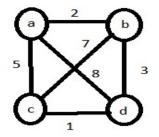
	Reg. No.									
	Question Paper Code12825									
	B.E. / B.Tech. / M.Tech DEGREE EXAMINATIONS, APRIL / MAY	Y 20	24							
	Fourth Semester									
Information Technology										
(Co	(Common to Computer Science and Engineering, Computer Science and Engineering(AIML),									
Computer Science and Engineering(IoT), Artificial Intelligence and Data Science & M.Tech -										
Computer Science and Engineering)										
20ITPC401 – DESIGN AND ANALYSIS OF ALGORITHMS										
	Regulations - 2020									
Dur	ation: 3 Hours Max.	Ma	ks:	100						
	$PART - A (10 \times 2 = 20 Marks)$	Marks	<u>K</u> -	. со						
1	Aliswei ALL Questions	2		CO1						
	Define best, worst and average time complexity.	_								
	Define the concepts of asymptotic notations and its properties.	2		CO1						
	State Brute force approach.	2		CO2						
	You are given a knapsack that can carry a maximum weight of 60. There are	2	K2	<i>CO2</i>						
	4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack?									
	The following methods can be used to solve the Knapsack problem?									
	Write the difference between Greedy Method and Dynamic Programming.	2	K2	CO3						
6.	What is multistage graph?	2	K1	CO3						
	List the three properties of flow networks.	2	K1	CO5						
	Define Ford – Fulkerson Method.	2	K1	CO5						
9.	Define P and NP Problems.	2	<i>K1</i>	<i>CO6</i>						
10	Define backtracking.	2	K1	<i>CO6</i>						


PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

 a) Give the General Plan for Analyzing the Time Efficiency of Recursive ¹³ K² CO1 Algorithms and use recurrence to find number of moves for Towers of Hanoi problem n.

OR

b) If $f(n)=2n^2+5$ and $g(n)=n^2$, find the best case, worst case and average 13 K2 CO1 case.

ii) Find the optimal solution for the following knapsack problem

	Item	Weight	Value
	1	2	\$1
	2	3	\$2
	3	4	\$8
	4	5	\$6
0			

Capacity W=8.

OR

- b) i) Explain the concepts of Brute force string matching Algorithm. 7 K2 CO2
 - ii) Explain the concepts of Closest pair problems by brute force. 6 K2 CO2
- 13. a) Apply the bottom up dynamic programming algorithm to the ¹³ K3 CO3 following instance of Knapsack Problem.

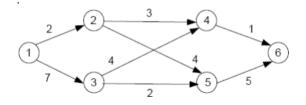
Item	Weight	Value
1	7	\$42
2	3	\$12
3	4	\$40
4	5	\$25

subject

Capacity W=10

OR

b) Explain in detail about Binomial coefficient with an example. 13 K3 CO3


14. a) Maximize:

Z=10x1+15x2+20x3

to $2x1+4x2+6x3 \le 24$ and

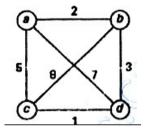
$3x1+9x2+6x3 \le 30$ where $x1,x2,x3 \ge 0$.

b) Illustrate pictorially the Ford –Fulkerson method by showing the flow ¹³ K² CO5 augmenting paths in bold for the given flow network.

2

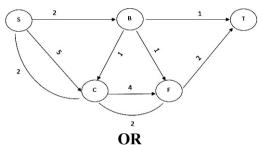
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13


K2 CO5

7 K2 CO2

15. a) Elaborate how backtracking technique can be used to solve the n- ¹³ K2 CO6 queens problem. Explain with an example.


OR

b) Apply Branch and Bound algorithm to solve the travelling salesman ¹³ K² CO6 problem for

PART - C (1 × 15 = 15 Marks)

16. a) Compute single source shortest path using floyd's method with its ¹⁵ K3 CO3 algorithm.

b) Define merge sort. Sort the numbers 6, 5, 11, 9, 24, 7, 8, 3, 4 using 15 K3 CO3 merge sort.