	Reg. No.			
	Question Paper Code 13282			
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024			
	Fifth Semester			
	Information Technology			
2	201TPW501 - STATISTICAL ANALYSIS USING R PROGRAMMING WITH LABO	RAT	ORY	7
_	Regulations - 2020		0111	
	(Use of Statistical Tables is permitted)			
Du	(Use of Statistical Tables 15 permitted)	Mai	rke 1	00
Du	$\mathbf{PART} = \mathbf{A} (\mathbf{MCO}) (20 \times 1 - 20 \mathbf{Marks})$. 19141	K5. 1	00
	Answer ALL Questions	Marks	K – Level	СО
1.	What is the output of the following snippet?	1	Kl	<i>CO1</i>
	fun1 = function(fruit = "Apple", veg = "Carrot")			
	aste(fruit, veg)			
	}			
	fun1(veg = "Beans", fruit="Banana")			
	(a) Banana Beans (b) Beans Banana (c) Apple Carrot (d) Error			
2.	What will be the output of the following R code?	1	Kl	<i>CO1</i>
	> sqrt(-17)			
3	(a) -4.02 (b) 4.02 (c) NaN (d) 3.67 What is the output of following code	1	KI	C01
5.	fun1 = function(x,y)	1		001
	{			
	return (x*y)			
	$\frac{1}{2}$ print(fun1(c(1:4).c(3:4)))			
	(a) 3 8 9 16 (b) 1 2 3 4 (c) 3 4 (d) Error			
4.	Which function generates random numbers from an exponential distribution in R?	1	Kl	<i>CO2</i>
5	(a) rexp() (b) runif() (c) rnorm() (d) rpois() Which function is used to create a histogram in R?	1	K1	<i>CO2</i>
5.	(a) hist() (b) boxplot() (c) barplot() (d) plot()			
6.	Which function is used to create a box plot in R?	1	Kl	<i>CO2</i>
7	(a) hist() (b) boxplot() (c) plot() (d) barplot() In the context of hypothesis testing, which statement is most accurate?	1	KI	C03
7.	(a) A low p-value guarantees the null hypothesis is false	1		005
	(b) A high p-value guarantees the null hypothesis is true			
	(c) P-values help assess the strength of evidence against the null hypothesis			
8	(d) P-values indicate the probability of the sample data A researcher uses the wilcox test function on two samples and gets a p-value of 0.04 What can	1	Kl	CO3
0.	they conclude at a 5% significance level?			
	(a) Null hypothesis cannot be rejected (b) Null hypothesis should be rejected			
9	(c) Cannot conclude anything (d) High chances of error Which of the following describes a two-sample T Test?	1	KI	<i>CO3</i>
).	(a) Tests for the mean of one group	-		
	(b) Compares the means of two independent groups			
	(c) Compares the medians of two related groups (d) Analyzes the variance within one group			
10.	Why are residuals important in assessing a regression model?	1	Kl	<i>CO</i> 4
	(a) They help compute the slope of the regression line			
	(b) They measure the goodness-of-fit of the model			
	(c) They multicate whether the relationship is nonlinear (d) They determine the correlation between two variables			
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate: K6 – Create		132	282
	$\frac{1}{1}$			

11.	If the confidence interval for a slope coefficient in regression includes 0, what does it suggest?	1	K1	<i>CO</i> 4
	(a) The independent variable is not statistically significant			
	(b) The relationship between the variables is positive			
	(d) The residuals are normally distributed			
12.	Which of the following is a key assumption of Pearson correlation?	1	Kl	<i>CO</i> 4
	(a) The variables are nominal (b) The relationship between variables is linear			
	(c) There are outliers in the data (d) The sample size is small			
13.	Which of the following best describes the Friedman Test?	Ι	KI	<i>CO5</i>
	(a) A parametric test for independent samples (b) A non-parametric test for related samples			
	(c) A test for equal variances among groups			
	(d) A test for differences in proportions			
14.	When plotting residuals against fitted values in a multiple regression analysis, what are you	1	Kl	CO5
	primarily checking for?			
	(a) Normality of the residuals (b) Independence of residuals			
15	(c) Homoscedasticity (d) Correlation between predictors Which of the following assumptions must be met for the Kruskal–Wallis Test to be valid?	1	Kl	C05
15.	(a) The samples must be independent (b) The samples must have equal variances			
	(c) The data must be normally distributed (d) Both A and C			
16.	If an ANOVA table shows a very small p-value (< 0.001) for the model, what action would you	1	K1	CO5
	take?			
	(a) Reject the model as insignificant (b) Conclude that the model explains a significant amount of variance in the dependent variable			
	(c) Perform a t-test for individual coefficients			
	(d) Gather more data			
17.	In polynomial regression, what effect does increasing the degree of the polynomial have on the	1	Kl	<i>CO6</i>
	model?			
	(a) It always improves the model's predictive accuracy (b) It increases the model's flexibility to fit more complex relationships			
	(c) It reduces the model's likelihood of overfitting			
	(d) It always leads to a simpler model			
18.	In a two-way ANOVA with replication, what does "replication" mean?	1	Kl	<i>C06</i>
	(a) Having more than two independent variables			
	(b) Having more than one observation for each combination of factors			
	(d) Adding more than two levels for each factor			
19.	Which R package provides advanced plotting options for polynomial regression models,	1	Kl	<i>C06</i>
	especially with ggplot2 syntax?			
•	(a) graphics (b) ggplot2 (c) dplyr (d) tidyr			996
20.	In R, how to calculate the predicted values from a polynomial regression model?	1	KI	<i>CO</i> 6
	(a) Using predict() (b) Using Inted() (c) Using Int.predict() (d) Both A and B			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
	Answer ALL Questions			
21.	Difference between a data frame and a matrix in R Program.	2	K2	<i>CO1</i>
22.	Write an R Program to Compute the mean of the square root of a vector of 100 random numbers.	2	K2	<i>CO1</i>
23.	State Boxplots.	2	Kl	<i>CO2</i>
24	Write an R Program to generate Random numbers	2	K2	<i>CO2</i>
21.	List the differences between one sample t test and two sample t test	2	к?	<i>CO</i> 3
25.	List the differences between one sample t test and two sample t test.	2	112	co2
26.	Illustrate Wilcoxon signed rank test.	2	Λ2	005
27.	State the difference between cor() and cor.test() in R Program.	2	K2	<i>CO</i> 4
28.	Differentiate between linear regression and multiple regression.	2	K2	<i>CO4</i>
29.	Write the difference between one-way ANOVA and two-way ANOVA.	2	K2	CO5
30.	Sate how can polynomial regression be used to model non-linear relationships.	2	K2	<i>C06</i>

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

PART - C (6 × 10 = 60 Marks)

		Answer ALL Questions			
31.	a)	Please obtain the transpose matrix of B named tB.			
		Consider A=matrix($c(2,0,1,3)$, ncol=2) and B=matrix($c(5,2,4,-1)$, ncol=2). (i) Find A + B	5	K2	C01
		(ii) Find $A - B$	5	К2	C01
		OR	5	112	001
	b) i)	Write a R program to create a factor corresponding to height of women data set, which contains height and weights for a sample of women.	5	K2	C01
	ii)	Write a R program to print the numbers from 1 to 100 and print "Fizz" for multiples of 3, print "Buzz" for multiples of 5, and print "FizzBuzz" for multiples of both.	5	K2	C01
32.	a)	Illustrate strip charts and histograms with examples and explain its importance with appropriate R codes.	10	K2	CO2
		OR			
	b) i)	Write R program to create pie chart for the following data. Housing600, Food300, Clothes -150, Entertainment—100,Others200	5	K2	<i>CO</i> 2
	ii)	Explain how to plot multiple curves in the same graph for table data and explain with an example.	5	K2	<i>CO2</i>
33.	a)	What is a One Sample T Test? Explain with an example and how To Calculate a Test Statistic and accept or reject the null hypothesis with an example program. OR	10	K2	<i>CO3</i>
	b)	Explain how to perform the two sample Wilcoxin test for any given data and write the appropriate R code.	10	K2	СО3
34.	a)	A researcher wants to determine if there is a significant monotonic relationship between hours spent studying and scores on a test. However, the data does not meet the assumption	10	K3	<i>CO</i> 4

of normality, so the researcher decides to use Spearman's correlation test. The dataset contains the following values:

Hours	2	4	3	5	6	7	8
Test Score	50	55	53	70	65	78	80

Find Spearman Correlation test statistics for x and y. Write the appropriate R program.

b) A psychologist is studying the relationship between stress levels and sleep quality in a group 10 K3 CO4 of 10 individuals. The psychologist measures stress levels (on a scale of 1 to 10) and sleep quality (also on a scale of 1 to 10) but finds that the data contain tied ranks, so they decide to use Kendall's Tau correlation test. The dataset is as follows:

Stress	4	7	5	9	6	3	8	5	6	2
Sleep	7	6	7	5	6	8	4	7	6	9

Do a rank correlation test of x and y using Kendall test. Write the appropriate R code.

35. a)

		OVEN TEMPERATURE		
		325	350	400
TYPE OF	WHITE SUGAR	10.75	8.75	4.00
SUGAR		9.50	8.25	5.50
		10.00	9.00	4.75
		10.00	8.00	4.00
		9.25	8.25	5.00
	WHITE AND BROWN	12.00	10.25	7.00
	SUGAR	10.00	9.00	7.25
		10.50	8.50	6.50
		11.25	10.50	5.00
		11.00	9.75	8.00

10 K3 CO5

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

Given the weight of the cookies for different oven temperatures and different sugar types. Is there difference in weight of the cookies for differing sugar type and operating temperature levels? Use two way ANOVA to test the significance level. $f_{(1, 24),0.05} = 4.26$ (for Sugar), $f_{(2, 24),0.05} = 3.403$ (for temperature), $f_{(2, 24),0.05} = 3.403$ (for interaction).

()]	R
C)	К

b) Given the survey results for 7 online stores for the last year find the equation of the straight 10 K3 CO5 line that fits the data best. Write an R program for the analysis.

Online Store	Monthly E- commerce Sales (in 1000 s)	Online Advertising Dollars (1000 s)
1	368	1.7
2	340	1.5
3	665	2.8
4	954	5
5	331	1.3
6	556	2.2
7	376	1.3

36. a) Given two samples, each comparing life expectancy vs. smoking for males and the second 10 K3 CO6 for females, determine whether there is any significant difference in the slopes for these two populations. Write the R code for comparing Regression Lines and Data Visualization

	Men		Nomen
Cig(x)	Life Exp(y)	Cig(x)	Life Exp(y)
5	80	22	88
23	78	7	95
25	60	20	86
48	53	23	60
17	85	15	82
8	84	34	75
4	73	4	80
26	79	40	68
11	81	8	93
19	75	16	77
14	68	11	72
35	72	52	67
29	58	3	90
4	92	31	66
23	65	18	72
		8	78
	0	R	

b) Fit polynomial regression for the below data set using R. Write appropriate R code for data *10 K3 CO6* Visualization, Regression Fit and Draw the graphical representation

Position [‡]	Level [‡]	Salary 🍦
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

4

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create