		Reg. No.							1
	Question Paper Code	13033							
MBA - DEGREE EXAMINATIONS, NOV / DEC 2024									
Third Semester									
Master of Business Administration									
20MBS303 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR									
DECISION MAKING									
-	Regulation	- 2020						100	
Du	ration: 3 Hours				Max	. Ma	rks:	100	
	PART - A (10 × 2	= 20 Marks)				Marks	K –	со	
1	Answer ALL Q What is the main difference between AI and	uestions Machine Learnin	a ?			2	K2	C01	
1. 2	Describe the concept of Statistics in the context of Data Science					2	K2	CO1	
2. 3	What is the Beta-binomial model, and how does it relate to probability?					2	K2	<i>CO2</i>	
Э. Л	A How does Gaussian discriminant analysis (GDA) model the decision					2	К2	CO2	
4.	boundaries between classes?	s (ODA) model	the	uee	151011	-	112	002	
5.	What is the core idea behind Bayesian Statis	tics and how doe	s it di	iffer t	from	2	K2	CO3	
	traditional frequentist statistics?								
6.	What does Model Fitting mean in the context of Logistic Regression?					2	K2	СО3	
7.	What is the core idea behind Divide and Conquer in AI problem-solving?					2	K2	<i>CO4</i>	
8.	What is the purpose of the activation function in a neural network?					2	K2	<i>CO</i> 4	
9.	Explain the concept of Time Series Forecasting and its application in AI.					2	K2	<i>CO5</i>	
10.	How does an RNN handle sequential data	a differently from	nat	raditi	onal	2	K2	СО3	
	neural network?								
	PART - B $(5 \times 13 = 65 \text{ Marks})$								
11	a) Examine the role of Reinforcement	Learning in sol	vino	com	nlev	13	K3	<i>CO1</i>	
11.	decision-making problems. How does	Reinforcement I	earni	ng d	liffer	•			

decision-making problems. How does Reinforcement Learning in solving complex 15 k5 c from other types of machine learning? Discuss its applications in realworld scenarios like robotics, gaming, and autonomous vehicles. What challenges does it face in terms of scalability and real-world implementation?

OR

b) Evaluate the importance of choosing the right Machine Learning ¹³ K³ CO1 Framework for building and deploying machine learning systems. Discuss the features of popular ML frameworks like TensorFlow, PyTorch, and Scikit-learn. How do these frameworks support different stages of the machine learning pipeline, from data preprocessing to model deployment? Provide examples of how each framework is used in specific applications. 12. a) Discuss the fundamental concepts of Probability Theory and explain its ¹³ K3 CO2 importance in statistical modeling and machine learning. Provide examples of how Discrete and Continuous probability distributions are used to model real-world problems.

OR

- b) Explain the Bayesian Concept Learning framework. How does it differ ¹³ K³ CO² from frequentist approaches, and what are the advantages of using Bayesian Learning in uncertain environments? Discuss the use of prior and posterior probabilities with the example of a Beta-Binomial model.
- 13. a) Explain the concept of Hierarchical Bayes models. How do these ¹³ K³ CO³ models improve the estimation of parameters, and in what situations would you prefer to use them over traditional Bayesian methods? Discuss their application with an example.

OR

- b) Describe the principles behind Bayesian Decision Theory. How does it ¹³ K³ CO³ help in making decisions under uncertainty, and what are the steps involved in applying it? Provide an example where Bayesian Decision Theory is used to make optimal decisions.
- 14. a) Explain the concept of Divide and Conquer in the context of AI. How is ¹³ K³ CO⁴ it applied in problem-solving techniques and AI algorithms? Provide examples of problems that can be solved effectively using this approach, and discuss its advantages and limitations.

OR

- b) Explain the structure of a Multilayer Perceptron (MLP) and ¹³ K3 CO4 Feedforward Neural Network (FFN). Discuss their components, how they process information, and the role of backpropagation in training these networks. Illustrate with an example of how an MLP is used in a classification task.
- 15. a) Explain the process of time series forecasting using Recurrent Neural ¹³ K3 C05 Networks (RNNs). How can RNNs be trained to predict future values based on historical data, and what are the key challenges and techniques in applying RNNs to time series problems? Provide a detailed example of a time series forecasting application, such as stock price prediction **or** weather forecasting.

OR

b) Discuss the applications of Recurrent Neural Networks (RNNs) in ¹³ K³ CO⁵ Artificial Intelligence (AI) across various sectors such as natural language processing (NLP), finance, healthcare, and autonomous driving. For each sector, provide an example where RNNs are used to solve a specific problem, and evaluate the effectiveness of RNN-based solutions in those areas.

a) Provide an in-depth analysis of Discrete and Continuous Probability ¹⁵ K3 CO2 Distributions. Discuss the differences, key characteristics, and applications of each. Also, explain how Gaussian models (such as Gaussian Discriminant Analysis) are used to model continuous variables. Include examples where both types of distributions are utilized in practical machine learning tasks.